Bibliography#

[APF13]

B Aamaas, GP Peters, and JS Fuglestvedt. Simple emission metrics for climate impacts. Earth System Dynamics, 4(1):145–170, 2013. doi:10.5194/esd-4-145-2013.

[Age21]

International Energy Agency. Global Hydrogen Review 2021: Assumptions. 2021. URL: https://iea.blob.core.windows.net/assets/2ceb17b8-474f-4154-aab5-4d898f735c17/IEAGHRassumptions_final.pdf (visited on 2023-08-23).

[ASF+18]

Myles R Allen, Keith P Shine, Jan S Fuglestvedt, Richard J Millar, Michelle Cain, David J Frame, and Adrian H Macey. A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. Npj Climate and Atmospheric Science, 1(1):1–8, 2018. doi:10.1038/s41612-018-0026-8.

[AG12]

Valeria Andreoni and S Galmarini. European CO2 emission trends: A decomposition analysis for water and aviation transport sectors. Energy, 45(1):595–602, 2012. doi:10.1016/j.energy.2012.07.039.

[AZ00]

Beng Wah Ang and Fang Q Zhang. A survey of index decomposition analysis in energy and environmental studies. Energy, 25(12):1149–1176, 2000. doi:10.1016/S0360-5442(00)00039-6.

[Big20]

Aurélien Bigo. Les transports face au défi de la transition énergétique. Explorations entre passé et avenir, technologie et sobriété, accélération et ralentissement. PhD thesis, Institut Polytechnique de Paris, 2020. URL: https://www.theses.fr/2020IPPAX068.

[CLA+19]

Michelle Cain, John Lynch, Myles R Allen, Jan S Fuglestvedt, David J Frame, and Adrian H Macey. Improved calculation of warming-equivalent emissions for short-lived climate pollutants. NPJ climate and atmospheric science, 2(1):1–7, 2019. doi:10.1038/s41612-019-0086-4.

[CFFS20]

William J Collins, David J Frame, Jan S Fuglestvedt, and Keith P Shine. Stable climate metrics for emissions of short and long-lived species – Combining steps and pulses. Environmental Research Letters, 15(2):024018, 2020. doi:10.1088/1748-9326/ab6039.

[dJ18]

missing school in de_jong_green_2018

[DJHF+15]

Sierk De Jong, Ric Hoefnagels, André Faaij, Raphael Slade, Rebecca Mawhood, and Martin Junginger. The feasibility of short-term production strategies for renewable jet fuels – A comprehensive techno-economic comparison. Biofuels, Bioproducts and Biorefining, 9(6):778–800, 2015. doi:10.1002/bbb.1613.

[DFG+22]

Scott Delbecq, Jérôme Fontane, Nicolas Gourdain, Hugo Mugnier, Thomas Planès, and Florian Simatos. Aviation and climate: a literature review. ISAE-SUPAERO, 2022. doi:10.34849/a66a-vv58.

[DA16]

Ibrahim Dincer and Canan Acar. Review and evaluation of hydrogen production methods for better sustainability. International Scientific Journal for Alternative Energy and Ecology (ISJAEE), 2495:14–36, 2016. doi:10.1016/j.ijhydene.2014.12.035.

[EHW+12]

A. Elgowainy, J. Han, M. Wang, N. Carter, R. Stratton, J. Hileman, A. Malwitz, and S. Balasubramanian. Life-Cycle Analysis of Alternative Aviation Fuels in GREET. Technical Report, United States, Department of Energy Office of Scientific and Technical Information, 2012. URL: https://doi.org/10.2172/1255237.

[FFN20]

Frank Fichert, Peter Forsyth, and Hans-Martin Niemeier. Aviation and Climate Change: Economic Perspectives on Greenhouse Gas Reduction Policies. Routledge, 2020. doi:10.4324/9781315572406.

[FG03]

Birgit Friedl and Michael Getzner. Determinants of CO2 emissions in a small open economy. Ecological economics, 45(1):133–148, 2003. doi:10.1016/S0921-8009(03)00008-9.

[FAR+14]

Pierre Friedlingstein, Robbie M Andrew, Joeri Rogelj, Glen P Peters, Josep G Canadell, Reto Knutti, Gunnar Luderer, Michael R Raupach, Michiel Schaeffer, Detlef P van Vuuren, and others. Persistent growth of CO2 emissions and implications for reaching climate targets. Nature geoscience, 7(10):709–715, 2014. doi:10.1038/ngeo2248.

[GLE08]

Klaus Martin Gierens, Ling Lim, and Kostas Eleftheratos. A review of various strategies for contrail avoidance. Open Atmospheric Science Journal, 2:1–7, 2008. doi:10.2174/1874282300802010001.

[GRZ20]

Brandon Graver, Dan Rutherford, and Sola Zheng. CO2 emissions from commercial aviation: 2013, 2018, and 2019. Technical Report, International Council on Clean Transportation, 2020. URL: https://theicct.org/publication/co2-emissions-from-commercial-aviation-2013-2018-and-2019/.

[GGRGronstedt+21]

Volker Grewe, Arvind Gangoli Rao, Tomas Grönstedt, Carlos Xisto, Florian Linke, Joris Melkert, Jan Middel, Barbara Ohlenforst, Simon Blakey, Simon Christie, and others. Evaluating the climate impact of aviation emission scenarios towards the Paris agreement including COVID-19 effects. Nature Communications, 12(1):1–10, 2021. doi:10.1038/s41467-021-24091-y.

[GosslingH20]

Stefan Gössling and Andreas Humpe. The global scale, distribution and growth of aviation: implications for climate change. Global Environmental Change, 65:102194, 2020. doi:10.1016/j.gloenvcha.2020.102194.

[HECW13]

Jeongwoo Han, Amgad Elgowainy, Hao Cai, and Michael Q Wang. Life-cycle analysis of bio-based aviation fuels. Bioresource technology, 150:447–456, 2013. doi:10.1016/j.biortech.2013.07.153.

[Has17]

Mohammed Hassan. Quantifying the impacts of vehicle technologies and operational improvements on air transportation system performance. PhD thesis, Georgia Institute of Technology, 2017.

[HPP+15]

Mohammed Hassan, Alexia Payan, Holger Pfaender, Dimitri N Mavris, Elena Garcia, and Jeff Schutte. Framework development for performance evaluation of the future national airspace system. In 15th AIAA Aviation Technology, Integration, and Operations Conference, 3187. 2015. doi:10.2514/6.2015-3187.

[HPM18]

Mohammed Hassan, Holger Pfaender, and Dimitri N Mavris. Impact of Aircraft Technologies on US Fleet CO2 Emissions. In 2018 Aviation Technology, Integration, and Operations Conference, 2870. 2018. doi:10.2514/6.2018-2870.

[IRE21]

IRENA. Reaching zero with renewables: Biojet fuels. Technical Report, International Renewable Energy Agency, 2021.

[JSCFV07]

Gloria Jarne, Julio Sanchez-Choliz, and Francisco Fatas-Villafranca. “S-shaped” curves in economic growth. A theoretical contribution and an application. Evolutionary and Institutional Economics Review, 3(2):239–259, 2007. doi:10.14441/eier.3.239.

[JW21]

Mengdi Ji and Jianlong Wang. Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. International Journal of Hydrogen Energy, 46(78):38612–38635, 2021. doi:10.1016/j.ijhydene.2021.09.142.

[JEHM+22]

Liang Jing, Hassan M. El-Houjeiri, Jean-Christophe Monfort, James Littlefield, Amjaad Al-Qahtani, Yash Dixit, Raymond L. Speth, Adam R. Brandt, Mohammad S. Masnadi, Heather L. MacLean, William Peltier, Deborah Gordon, and Joule A. Bergerson. Understanding variability in petroleum jet fuel life cycle greenhouse gas emissions to inform aviation decarbonization. Nature Communications, 13(1):7853, 2022. doi:10.1038/s41467-022-35392-1.

[KY+97]

Yoichi Kaya, Keiichi Yokobori, and others. Environment, energy, and economy: strategies for sustainability. United Nations University Press Tokyo, 1997.

[KlowerAL+21]

Milan Klöwer, MR Allen, DS Lee, SR Proud, Leo Gallagher, and Agnieszka Skowron. Quantifying aviation’s contribution to global warming. Environmental Research Letters, 16(10):104027, 2021. doi:10.1088/1748-9326/ac286e.

[KLLW08]

Thomas G Kreutz, Eric D Larson, Guangjian Liu, and Robert H Williams. Fischer-Tropsch fuels from coal and biomass. In 25th annual international Pittsburgh coal conference, volume 29. International Pittsburgh Coal Conference Pittsburgh, Pennsylvania, 2008.

[KDG11]

Dmitry Kucharavy and Roland De Guio. Application of S-shaped curves. Procedia Engineering, 9:559–572, 2011. doi:10.1016/j.proeng.2011.03.142.

[KDG15]

Dmitry Kucharavy and Roland De Guio. Application of logistic growth curve. Procedia engineering, 131:280–290, 2015. doi:10.1016/j.proeng.2015.12.390.

[LWP+21]

William F Lamb, Thomas Wiedmann, Julia Pongratz, Robbie Andrew, Monica Crippa, Jos GJ Olivier, Dominik Wiedenhofer, Giulio Mattioli, Alaa Al Khourdajie, Jo House, and others. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental research letters, 16(7):073005, 2021. doi:10.1088/1748-9326/abee4e.

[LFS+21]

David S Lee, DW Fahey, Agnieszka Skowron, MR Allen, Ulrike Burkhardt, Q Chen, SJ Doherty, S Freeman, PM Forster, J Fuglestvedt, and others. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmospheric Environment, 244:117834, 2021. doi:10.1016/j.atmosenv.2020.117834.

[LZZW17]

Xiao Liu, Dequn Zhou, Peng Zhou, and Qunwei Wang. What drives CO2 emissions from China’s civil aviation? An exploration using a new generalized PDA method. Transportation Research Part A: Policy and Practice, 99:30–45, 2017. doi:10.1016/j.tra.2017.03.002.

[LCPA20]

John Lynch, Michelle Cain, Raymond Pierrehumbert, and Myles Allen. Demonstrating GWP*: A means of reporting warming-equivalent emissions that captures the contrasting impacts of short-and long-lived climate pollutants. Environmental Research Letters, 15(4):044023, 2020. doi:10.1088/1748-9326/ab6d7e.

[MPStromG05]

Susanne Marquart, Michael Ponater, Linda Ström, and Klaus Gierens. An upgraded estimate of the radiative forcing of cryoplane contrails. Meteorologische Zeitschrift, 14(4):573–582, 2005. doi:10.1127/0941-2948/2005/0057.

[MLuhrsD+20]

Sigrun Matthes, Benjamin Lührs, Katrin Dahlmann, Volker Grewe, Florian Linke, Feijia Yin, Emma Klingaman, and Keith P Shine. Climate-optimized trajectories and robust mitigation potential: Flying ATM4E. Aerospace, 7(11):156, 2020. doi:10.3390/aerospace7110156.

[MGSZ09]

H Damon Matthews, Nathan P Gillett, Peter A Stott, and Kirsten Zickfeld. The proportionality of global warming to cumulative carbon emissions. Nature, 459(7248):829–832, 2009. doi:10.1038/nature08047.

[MN22]

Malte Meinshausen and Zebedee Nicholls. GWP* is a model, not a metric. Environmental Research Letters, 17(4):041002, 2022. doi:10.1088/1748-9326/ac5930.

[NS07]

Frank Noppel and Riti Singh. Overview on contrail and cirrus cloud avoidance technology. Journal of Aircraft, 44(5):1721–1726, 2007. doi:10.2514/1.28655.

[OMalleyPS21]

Jane O'Malley, Nikita Pavlenko, and Stephanie Searle. Estimating sustainable aviation fuel feedstock availability to meet growing European Union demand. Working paper 2021-13, ICCT, 2021.

[PBS+19]

B Parkinson, P Balcombe, JF Speirs, AD Hawkes, and K Hellgardt. Levelized cost of CO2 mitigation from hydrogen production routes. Energy & environmental science, 12(1):19–40, 2019. doi:10.1039/C8EE02079E.

[Pav19]

Nikita Pavlenko. The cost of supporting alternative jet fuels in the European Union. Technical Report, ICCT, 2019.

[PWH13]

Matthew Pearlson, Christoph Wollersheim, and James Hileman. A techno-economic review of hydroprocessed renewable esters and fatty acids for jet fuel production. Biofuels, Bioproducts and Biorefining, 7(1):89–96, 2013. doi:10.1002/bbb.1378.

[PIK22]

Potsdam PIK. Price of Hydrogen: CAPEX Data. 2022. URL: https://h2.pik-potsdam.de/H2Dash/#section-visualisations (visited on 2022-11-23).

[PMBC+20]

Sofia Pinheiro Melo, Alexander Barke, Felipe Cerdas, Christian Thies, Mark Mennenga, Thomas S Spengler, and Christoph Herrmann. Sustainability assessment and engineering of emerging aircraft technologies — Challenges, methods and tools. Sustainability, 12(14):5663, 2020. doi:10.3390/su12145663.

[Planes22]

Thomas Planès. Du dimensionnement de systèmes et d'architectures en conception avion à la simulation de scénarios prospectifs durables pour le transport aérien. PhD thesis, Université de Toulouse, Institut Supérieur de l’Aéronautique et de l’Espace, 2022. URL: https://www.theses.fr/2022ESAE0059.

[PLW+21]

Matteo Prussi, Uisung Lee, Michael Wang, Robert Malina, Hugo Valin, Farzad Taheripour, César Velarde, Mark D Staples, Laura Lonza, and James I Hileman. CORSIA: The first internationally adopted approach to calculate life-cycle GHG emissions for aviation fuels. Renewable and Sustainable Energy Reviews, 150:111398, 2021. doi:10.1016/j.rser.2021.111398.

[Qui20]

Alain Quinet. What Value Do We Attach to Climate Action? Economie et Statistique / Economics and Statistics, pages 165–179, January 2020. doi:10.24187/ecostat.2019.510t.1995.

[RSSS16]

Kristof Risse, Katharina Schäfer, Florian Schültke, and Eike Stumpf. Central Reference Aircraft data System (CeRAS) for research community. CEAS Aeronautical Journal, pages 121–133, March 2016. doi:10.1007/s13272-015-0177-9.

[RFK+19]

Joeri Rogelj, Piers M Forster, Elmar Kriegler, Christopher J Smith, and Roland Séférian. Estimating and tracking the remaining carbon budget for stringent climate targets. Nature, 571(7765):335–342, 2019. doi:10.1038/s41586-019-1368-z.

[SDPlanesL23]

Antoine Salgas, Scott Delbecq, Thomas Planès, and Gilles Lafforgue. Top level aircraft requirements relaxation for a single-aisle aircraft: a case study on fleet-wide co2 emissions and economic impacts. In AIAA SCITECH 2023 Forum, 1357. 2023. doi:10.2514/6.2023-1357.

[SDPlanes+23]

Antoine Salgas, Scott Delbecq, Thomas Planès, Gilles Lafforgue, and Joël Jézégou. Modelling and simulation of new regulatory measures in prospective scenarios for air transport. In Aerospace Europe Conference. 2023.

[SPlanesD+23]

Antoine Salgas, Thomas Planès, Scott Delbecq, Florian Simatos, and Gilles Lafforgue. Cost estimation of the use of low-carbon fuels in prospective scenarios for air transport. In AIAA SCITECH 2023 Forum, 2328. 2023. doi:10.2514/6.2023-2328.

[SHDW+16]

Heinz Schandl, Steve Hatfield-Dodds, Thomas Wiedmann, Arne Geschke, Yiyong Cai, James West, David Newth, Tim Baynes, Manfred Lenzen, and Anne Owen. Decoupling global environmental pressure and economic growth: scenarios for energy use, materials use and carbon emissions. Journal of Cleaner Production, 132:45–56, 2016. doi:10.1016/j.jclepro.2015.06.100.

[SEW+21]

Maria Sharmina, Oreane Y Edelenbosch, Charlie Wilson, Rachel Freeman, DEHJ Gernaat, Paul Gilbert, Alice Larkin, EW Littleton, Michael Traut, Detlef P van Vuuren, and others. Decarbonising the critical sectors of aviation, shipping, road freight and industry to limit warming to 1.5-2°C. Climate Policy, 21(4):455–474, 2021. doi:10.1080/14693062.2020.1831430.

[SFHS05]

Keith P Shine, Jan S Fuglestvedt, Kinfe Hailemariam, and Nicola Stuber. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Climatic Change, 68(3):281–302, 2005. doi:10.1007/s10584-005-1146-9.

[SD19]

Osamah Siddiqui and Ibrahim Dincer. A well to pump life cycle environmental impact assessment of some hydrogen production routes. International Journal of Hydrogen Energy, 44(12):5773–5786, 2019. doi:10.1016/j.ijhydene.2019.01.118.

[SLDLeon+21]

Agnieszka Skowron, David S. Lee, Rubén Rodríguez De León, Ling L. Lim, and Bethan Owen. Greater fuel efficiency is potentially preferable to reducing no\textsubscript x emissions for aviation's climate impacts. Nature Communications, 12(1):564, 2021. doi:10.1038/s41467-020-20771-3.

[SBG14]

Raphael Slade, Ausilio Bauen, and Robert Gross. Global bioenergy resources. Nature Climate Change, 4(2):99–105, 2014.

[SMB17]

Mark D Staples, Robert Malina, and Steven RH Barrett. The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels. Nature Energy, 2(2):1–8, 2017. doi:10.1038/nenergy.2016.202.

[SMO+14]

Mark D Staples, Robert Malina, Hakan Olcay, Matthew N Pearlson, James I Hileman, Adam Boies, and Steven RH Barrett. Lifecycle greenhouse gas footprint and minimum selling price of renewable diesel and jet fuel from fermentation and advanced fermentation production technologies. Energy & Environmental Science, 7(5):1545–1554, 2014. doi:10.1039/C3EE43655A.

[SMS+18]

Mark D Staples, Robert Malina, Pooja Suresh, James I Hileman, and Steven RH Barrett. Aviation CO2 emissions reductions from the use of alternative jet fuels. Energy Policy, 114:342–354, 2018. doi:10.1016/j.enpol.2017.12.007.

[SQP+13]

T.F. Stocker, Dahe Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2013.

[SWH+10]

Russell Stratton, Hsin Min Wong, James Hileman, and others. Life cycle greenhouse gas emissions from alternative jet fuels. Technical Report, Partnership for AiR Transportation Noise and Emissions Reduction, 2010. URL: https://rosap.ntl.bts.gov/view/dot/66442/dot_66442_DS1.pdf.

[TSMS20]

Roger Teoh, Ulrich Schumann, Arnab Majumdar, and Marc EJ Stettler. Mitigating the climate forcing of aircraft contrails by small-scale diversions and technology adoption. Environmental Science & Technology, 54(5):2941–2950, 2020. doi:10.1021/acs.est.9b05608.

[THC+22]

Etienne Terrenoire, Didier A Hauglustaine, Yann Cohen, Anne Cozic, Richard Valorso, Franck Lefèvre, and Sigrun Matthes. Impact of present and future aircraft NOx and aerosol emissions on atmospheric composition and associated direct radiative forcing of climate. Atmospheric Chemistry and Physics, 22(18):11987–12023, 2022. doi:10.5194/acp-22-11987-2022.

[UBD+21]

Falko Ueckerdt, Christian Bauer, Alois Dirnaichner, Jordan Everall, Romain Sacchi, and Gunnar Luderer. Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nature Climate Change, 11(5):384–393, 2021. doi:10.1038/s41558-021-01032-7.

[UdfB21]

Energy and industrial strategy UK department for Business. Hydrogen production costs 2021. Technical Report, UK Government, 2021.

[WCC15]

Qunwei Wang, Yung-Ho Chiu, and Ching-Ren Chiu. Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis. Energy Economics, 51:252–260, 2015. doi:10.1016/j.eneco.2015.07.009.

[WMK17]

Marshall Wise, Matteo Muratori, and Page Kyle. Biojet fuels and emissions mitigation in aviation: An integrated assessment modeling analysis. Transportation Research Part D: Transport and Environment, 52:244–253, 2017. doi:10.1016/j.trd.2017.03.006.

[ZTM+21]

Xin Zhao, Farzad Taheripour, Robert Malina, Mark D Staples, and Wallace E Tyner. Estimating induced land use change emissions for sustainable aviation biofuel pathways. Science of the Total Environment, 779:146238, 2021. doi:10.1016/j.scitotenv.2021.146238.

[Airbus22]

Airbus. Global Market Forecast 2022. Technical Report, Airbus, 2022. URL: https://www.airbus.com/en/products-services/commercial-aircraft/market/global-market-forecast.

[AirTransportActionGroup21]

Air Transport Action Group. Waypoint 2050. Technical Report, ATAG, 2021. URL: https://aviationbenefits.org/environmental-efficiency/climate-action/waypoint-2050/.

[InternationalCAOrganization18]

International Civil Aviation Organization. ICAO Carbon Emissions Calculator Methodology. 2018.

[InternationalEAgency19]

International Energy Agency. The Future of Hydrogen – Seizing today’s opportunities. Technical Report, IEA, 2019. URL: https://www.iea.org/reports/the-future-of-hydrogen.

[ScienceBTInitiative15]

Science Based Targets Initiative. Sectoral Decarbonization Approach (SDA): A method for setting corporate emission reduction targets in line with climate science. Technical Report, SBTI, 2015.