Skip to content

aeromaps.models.impacts.generic_energy_model.bottom_up.cost

cost

====== Module to compute pathway mfsp and investments using the bottom-up techno-economic model.

BottomUpCost

BottomUpCost(name, configuration_data, resources_data, processes_data, *args, **kwargs)

Bases: AeroMAPSModel

Bottom-up techno-economic cost model for a given pathway, based on annual plant additions.

Parameters:

Name Type Description Default
name str

Name of the model instance ('f"{pathway_name}_bottom_up_unit_cost"' by default).

required
configuration_data dict

Configuration data for the pathway from the yaml file.

required
resources_data dict

Configuration data for the resources from the yaml file.

required
processes_data dict

Configuration data for the processes from the yaml file.

required

Attributes:

Name Type Description
input_names dict

Dictionary of input variable names populated at model initialisation before MDA chain creation.

output_names dict

Dictionary of output variable names populated at model initialisation before MDA chain creation.

resource_keys list

List of resource keys used in the pathway.

process_keys list

List of process keys used in the pathway.

compute_all_years bool

Flag indicating whether to compute costs for all years or only for years with commissioned capacity.

compute_abatement_cost bool

Flag indicating whether to compute abatement costs.

Source code in aeromaps/models/impacts/generic_energy_model/bottom_up/cost.py
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
def __init__(self, name, configuration_data, resources_data, processes_data, *args, **kwargs):
    super().__init__(
        name=name,
        model_type="custom",
        *args,
        **kwargs,
    )
    # Get the name of the pathway
    self.pathway_name = configuration_data["name"]

    # Get the inputs from the configuration file: two options
    # 1. All inputs of a certain category in the yaml file
    for key, val in configuration_data.get("inputs").get("economics", {}).items():
        # TODO initialize with zeros instead of actual val?
        self.input_names[key] = val
    for key, val in configuration_data.get("inputs").get("technical", {}).items():
        # TODO initialize with zeros instead of actual val? How to better get rid of unnecessary variables
        if (
            key == f"{self.pathway_name}_resource_names"
            or key == f"{self.pathway_name}_processes_names"
        ):
            pass  # avoid having strings as variable in gemseo, not needed as variables
        else:
            self.input_names[key] = val

    # 2. Set individual inputs, coming either from other models or from the yaml as well
    self.input_names.update(
        {
            f"{self.pathway_name}_energy_production_commissioned": pd.Series([0.0]),
            f"{self.pathway_name}_energy_consumption": pd.Series([0.0]),
            f"{self.pathway_name}_energy_unused": pd.Series([0.0]),
            f"{self.pathway_name}_mean_co2_emission_factor": pd.Series([0.0]),
            "private_discount_rate": 0.0,
            "carbon_tax": pd.Series([0.0]),
        }
    )
    if configuration_data.get("environmental_model") == "bottom_up":
        self.input_names.update(
            {
                f"{self.pathway_name}_vintage_eis_co2_emission_factor": pd.Series([0.0]),
            }
        )

    self.output_names = {
        f"{self.pathway_name}_mean_mfsp_without_resource": pd.Series([0.0]),
        f"{self.pathway_name}_mean_unit_capex": pd.Series([0.0]),
        f"{self.pathway_name}_mean_unit_fixed_opex": pd.Series([0.0]),
        f"{self.pathway_name}_mean_unit_variable_opex": pd.Series([0.0]),
        f"{self.pathway_name}_capex_cost": pd.Series([0.0]),
        # Ajout des sorties vintage pour les coûts principaux
        f"{self.pathway_name}_vintage_unit_capex": pd.Series([0.0]),
        f"{self.pathway_name}_vintage_unit_fixed_opex": pd.Series([0.0]),
        f"{self.pathway_name}_vintage_unit_variable_opex": pd.Series([0.0]),
    }

    # 3. Getting resources is a bit more complex as we need to get necessary resources for the pathway
    self.resource_keys = (
        configuration_data.get("inputs")
        .get("technical", {})
        .get(f"{self.pathway_name}_resource_names", [])
    ).copy()

    for key in self.resource_keys:
        # Outputs.
        self.output_names[f"{self.pathway_name}_excluding_processes_{key}_mean_unit_cost"] = (
            pd.Series([0.0])
        )
        # Ajout sortie vintage pour chaque ressource
        self.output_names[
            f"{self.pathway_name}_excluding_processes_{key}_vintage_unit_cost"
        ] = pd.Series([0.0])

    self.process_keys = (
        configuration_data.get("inputs")
        .get("technical", {})
        .get(f"{self.pathway_name}_processes_names", [])
    ).copy()

    for process_key in self.process_keys:
        for key, val in processes_data[process_key].get("inputs").get("technical", {}).items():
            if key == f"{process_key}_resource_names":
                resources = (
                    processes_data[process_key]
                    .get("inputs")
                    .get("technical", {})
                    .get(f"{process_key}_resource_names", [])
                ).copy()
                self.resource_keys.extend(resources)
                for resource in resources:
                    self.output_names[
                        f"{self.pathway_name}_{process_key}_{resource}_mean_unit_cost"
                    ] = pd.Series([0.0])
                    # Ajout sortie vintage pour chaque ressource de process
                    self.output_names[
                        f"{self.pathway_name}_{process_key}_{resource}_vintage_unit_cost"
                    ] = pd.Series([0.0])
            else:
                # TODO initialize with zeros instead of actual val?
                self.input_names[key] = val

        for key, val in processes_data[process_key].get("inputs").get("economics", {}).items():
            # TODO initialize with zeros instead of actual val?
            self.input_names[key] = val
        self.output_names[
            f"{self.pathway_name}_{process_key}_mean_unit_cost_without_resources"
        ] = pd.Series([0.0])
        self.output_names[f"{self.pathway_name}_{process_key}_mean_unit_capex"] = pd.Series(
            [0.0]
        )
        self.output_names[f"{self.pathway_name}_{process_key}_capex_cost"] = pd.Series([0.0])
        self.output_names[f"{self.pathway_name}_{process_key}_mean_unit_fixed_opex"] = (
            pd.Series([0.0])
        )
        self.output_names[f"{self.pathway_name}_{process_key}_mean_unit_variable_opex"] = (
            pd.Series([0.0])
        )
        self.output_names[f"{self.pathway_name}_{process_key}_vintage_unit_capex"] = pd.Series(
            [0.0]
        )
        self.output_names[f"{self.pathway_name}_{process_key}_vintage_unit_fixed_opex"] = (
            pd.Series([0.0])
        )
        self.output_names[f"{self.pathway_name}_{process_key}_vintage_unit_variable_opex"] = (
            pd.Series([0.0])
        )

    # Getting unique resources
    self.resource_keys = list(set(self.resource_keys))

    # Adding resources-linked inputs and outputs
    # TODO specify eco/cost as for process
    for key in self.resource_keys:
        if f"{key}_cost" in resources_data[key]["specifications"]:
            self.input_names[f"{key}_cost"] = pd.Series([0.0])
        if f"{key}_load_factor" in resources_data[key]["specifications"]:
            self.input_names[f"{key}_load_factor"] = pd.Series([0.0])
        # Outputs.

    # Fill in the expected outputs with names from the compute method, initialized with NaN
    self.output_names.update(
        {
            f"{self.pathway_name}_net_mfsp_without_carbon_tax": pd.Series([0.0]),
            f"{self.pathway_name}_net_mfsp": pd.Series([0.0]),
            f"{self.pathway_name}_mean_mfsp": pd.Series([0.0]),
            f"{self.pathway_name}_marginal_mfsp": pd.Series([0.0]),
            f"{self.pathway_name}_mean_unit_tax": pd.Series([0.0]),
            f"{self.pathway_name}_mean_unit_carbon_tax": pd.Series([0.0]),
            f"{self.pathway_name}_mean_unit_subsidy": pd.Series([0.0]),
        }
    )

    if configuration_data.get("environmental_model") == "bottom_up":
        self.output_names.update(
            {
                f"{self.pathway_name}_vintage_eis_carbon_tax": pd.Series([0.0]),
            }
        )

    if configuration_data.get("compute_all_years"):
        self.compute_all_years = True
    else:
        self.compute_all_years = False

    if configuration_data.get("abatement_cost"):
        self.compute_abatement_cost = True
        self.output_names[f"{self.pathway_name}_lifespan_unitary_discounted_costs"] = pd.Series(
            [0.0]
        )
        self.input_names["social_discount_rate"] = 0.0
    else:
        self.compute_abatement_cost = False

compute

compute(input_data)

Execute the bottom-up techno-economic cost computation for the pathway. Each plant (vintage) is commissioned with the characteristics of its commissioning year, and its emissions are distributed over its lifespan, weighted by its share in annual production.

Parameters:

Name Type Description Default
input_data

Dictionary containing all input data required for the computation, completed at model instantiation with information from yaml files and outputs of other models.

required

Returns:

Type Description
output_data

Dictionary containing all output data resulting from the computation. Contains outputs defined during model instantiation.

Source code in aeromaps/models/impacts/generic_energy_model/bottom_up/cost.py
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
def compute(self, input_data) -> dict:
    """
    Execute the bottom-up techno-economic cost computation for the pathway.
    Each plant (vintage) is commissioned with the characteristics of its commissioning year,
    and its emissions are distributed over its lifespan, weighted by its share in annual production.

    Parameters
    ----------
    input_data
        Dictionary containing all input data required for the computation, completed at model instantiation with information from yaml files and outputs of other models.

    Returns
    -------
    output_data
        Dictionary containing all output data resulting from the computation. Contains outputs defined during model instantiation.
    """
    optional_nan_series = pd.Series(
        np.nan, index=range(self.historic_start_year, self.end_year + 1)
    )

    energy_production_commissioned = input_data[
        f"{self.pathway_name}_energy_production_commissioned"
    ]
    energy_consumption = input_data[f"{self.pathway_name}_energy_consumption"]
    energy_unused = input_data[f"{self.pathway_name}_energy_unused"]

    # first lets initialize the output data with mean mfsp components by parsing resources and processes
    # Prepare outputs
    output_data = {k: optional_nan_series.copy() for k in self.output_names}

    # First lets compute the core mfsp
    for year, needed_capacity in energy_production_commissioned.items():
        # Get the technical inputs
        private_discount_rate = _get_value_for_year(
            input_data.get("private_discount_rate"), year, 0.0
        )
        lifespan = _get_value_for_year(
            input_data.get(f"{self.pathway_name}_eis_plant_lifespan"), year, 25
        )
        construction_time = _get_value_for_year(
            input_data.get(f"{self.pathway_name}_eis_construction_time"), year, 3
        )
        plant_load_factor = _get_value_for_year(
            input_data.get(f"{self.pathway_name}_eis_plant_load_factor"), year, 1
        )

        # plant production is potentially evaluated beyond scenario end year
        vintage_indexes = range(year, year + lifespan)
        vintage_mfsp = pd.Series(np.nan, index=vintage_indexes)
        if (
            energy_consumption[year] > 0
            and needed_capacity <= 0
            and self.compute_abatement_cost
            and not self.compute_all_years
        ):
            print(
                f"⚠️ Warning:  for {self.pathway_name}, no plants commissioned in {year}. Unable to compute "
                f"CAC: compute_all_years = False. Set it true to avoid NaN values in the MACC for this year."
            )
        if needed_capacity > 0 or self.compute_all_years:
            if needed_capacity < 0:
                warnings.warn(
                    f"Negative needed capacity for {self.pathway_name} in year {year}. "
                    "This is not expected despite the compute_all_years option being set to True."
                )
            # relative contibution of the vintage
            relative_share = needed_capacity / (energy_consumption + energy_unused)

            relative_share = relative_share.loc[year : year + lifespan - 1]

            # I -- First lets compute the core MFSP (no resources, no processes)
            # Get the inputs for the year
            capex = _get_value_for_year(
                input_data.get(f"{self.pathway_name}_eis_capex"), year, 0.0
            )

            # get the plant load factor for the year: minimum of plant load factor and resource load factors
            # TODO what shall we do with processes LF? Uncoupling core and processes make sense in many cases.
            main_process_load_factor = plant_load_factor
            for key in input_data.get(f"{self.pathway_name}_resource_names", []):
                if f"{key}_load_factor" in input_data:
                    resource_load_factor = _get_value_for_year(
                        input_data.get(f"{key}_load_factor"), year, 1.0
                    )
                    if resource_load_factor is not None:
                        main_process_load_factor = min(
                            main_process_load_factor, resource_load_factor
                        )

            # Compute the capital cost per unit of energy produced. Capex in €/(MJ/Year), mfsp capex in €/MJ
            mfsp_capex = (
                self._spread_capital(capex, private_discount_rate, lifespan, construction_time)
                / main_process_load_factor
            )

            capex_year = capex * needed_capacity
            output_data[f"{self.pathway_name}_capex_cost"].loc[
                year - construction_time : year
            ] = _custom_series_addition(
                output_data[f"{self.pathway_name}_capex_cost"].loc[
                    year - construction_time : year
                ],
                capex_year / construction_time / main_process_load_factor,
            )

            output_data[f"{self.pathway_name}_mean_unit_capex"].loc[
                year : year + lifespan - 1
            ] = _custom_series_addition(
                output_data[f"{self.pathway_name}_mean_unit_capex"].loc[
                    year : year + lifespan - 1
                ],
                mfsp_capex * relative_share,
            )

            # compyte the EIS unitary capex
            output_data[f"{self.pathway_name}_vintage_unit_capex"].loc[year] = mfsp_capex

            # As var opex is in € per MJ we can directly get it
            variable_opex = _get_value_for_year(
                input_data.get(f"{self.pathway_name}_eis_variable_opex"), year, 0.0
            )
            output_data[f"{self.pathway_name}_mean_unit_variable_opex"].loc[
                year : year + lifespan - 1
            ] = _custom_series_addition(
                output_data[f"{self.pathway_name}_mean_unit_variable_opex"].loc[
                    year : year + lifespan - 1
                ],
                variable_opex * relative_share,
            )

            # compyte the EIS variable opex --> No need, directly from input eis_variable_opex
            output_data[f"{self.pathway_name}_vintage_unit_variable_opex"].loc[year] = (
                variable_opex
            )

            # As fixed opex is in €/year for a plant of 1 MJ/year, we can directly get it in €/MJ
            fixed_opex = (
                _get_value_for_year(
                    input_data.get(f"{self.pathway_name}_eis_fixed_opex"), year, 0.0
                )
                / main_process_load_factor
            )
            output_data[f"{self.pathway_name}_mean_unit_fixed_opex"].loc[
                year : year + lifespan - 1
            ] = _custom_series_addition(
                output_data[f"{self.pathway_name}_mean_unit_fixed_opex"].loc[
                    year : year + lifespan - 1
                ],
                fixed_opex * relative_share,
            )

            # compyte the EIS fixed opex
            output_data[f"{self.pathway_name}_vintage_unit_fixed_opex"].loc[year] = fixed_opex

            vintage_mfsp = _custom_series_addition(
                vintage_mfsp, mfsp_capex + fixed_opex + variable_opex
            )

            output_data[f"{self.pathway_name}_mean_mfsp_without_resource"].loc[
                year : year + lifespan - 1
            ] = _custom_series_addition(
                output_data[f"{self.pathway_name}_mean_mfsp_without_resource"].loc[
                    year : year + lifespan - 1
                ],
                vintage_mfsp * relative_share,
            )

            # II -- Now lets get the resources as in TopDownCost model
            for key in self.resource_keys:
                # get the specific consumption of the resource
                specific_consumption = _get_value_for_year(
                    input_data.get(
                        f"{self.pathway_name}_eis_resource_specific_consumption_{key}"
                    ),
                    year,
                    None,
                )

                if specific_consumption is not None:
                    resource_price = input_data.get(f"{key}_cost", optional_nan_series.copy())

                    # cast mfsp_resource to a series with the same index as
                    # vintage_mfsp by keeping correct values (<end year) extending last year value to the end of the vintage_mfsp
                    mfsp_resource = pd.Series(
                        [
                            resource_price[year] * specific_consumption
                            if year <= self.end_year and year in resource_price.index
                            else resource_price.iloc[-1] * specific_consumption
                            for year in vintage_mfsp.index
                        ],
                        index=vintage_mfsp.index,
                    )

                    vintage_mfsp = _custom_series_addition(vintage_mfsp, mfsp_resource)

                    # Store the resource cost in the output data
                    output_data[
                        f"{self.pathway_name}_excluding_processes_{key}_mean_unit_cost"
                    ].loc[year : year + lifespan - 1] = _custom_series_addition(
                        output_data[
                            f"{self.pathway_name}_excluding_processes_{key}_mean_unit_cost"
                        ].loc[year : year + lifespan - 1],
                        mfsp_resource * relative_share,
                    )

                    # compyte the EIS resource cost (at first year energy cost)
                    output_data[
                        f"{self.pathway_name}_excluding_processes_{key}_vintage_unit_cost"
                    ].loc[year] = mfsp_resource[year]

                # get processes that use this resource
                for process_key in self.process_keys:
                    specific_consumption = _get_value_for_year(
                        input_data.get(
                            f"{process_key}_eis_resource_specific_consumption_{key}"
                        ),
                        year,
                        None,
                    )

                    if specific_consumption is not None:
                        process_ressource_price = input_data.get(
                            f"{key}_cost", optional_nan_series.copy()
                        )
                        # cast mfsp_resource to a series with the same index as
                        # vintage_mfsp by keeping correct values (<end year) extending last year value to the end of the vintage_mfsp
                        mfsp_process_ressource = pd.Series(
                            [
                                process_ressource_price[year] * specific_consumption
                                if year <= self.end_year
                                and year in process_ressource_price.index
                                else process_ressource_price.iloc[-1] * specific_consumption
                                for year in vintage_mfsp.index
                            ],
                            index=vintage_mfsp.index,
                        )

                        vintage_mfsp = _custom_series_addition(
                            vintage_mfsp, mfsp_process_ressource
                        )

                        # Store the resource cost in the output data
                        output_data[
                            f"{self.pathway_name}_{process_key}_{key}_mean_unit_cost"
                        ].loc[year : year + lifespan - 1] = _custom_series_addition(
                            output_data[
                                f"{self.pathway_name}_{process_key}_{key}_mean_unit_cost"
                            ].loc[year : year + lifespan - 1],
                            mfsp_process_ressource * relative_share,
                        )

                        # compyte the EIS resource cost (at first year energy cost)
                        output_data[
                            f"{self.pathway_name}_{process_key}_{key}_vintage_unit_cost"
                        ].loc[year] = mfsp_process_ressource[year]

            # III -- Now lets get the processes
            for process_key in self.process_keys:
                process_capex = _get_value_for_year(
                    input_data.get(f"{process_key}_eis_capex"), year, 0.0
                )
                process_lifespan = _get_value_for_year(
                    input_data.get(f"{process_key}_eis_plant_lifespan"), year, 25
                )
                process_construction_time = _get_value_for_year(
                    input_data.get(f"{process_key}_eis_construction_time"), year, 3.0
                )
                process_load_factor = _get_value_for_year(
                    input_data.get(f"{process_key}_eis_plant_load_factor"), year, 1.0
                )
                # get the process load factor for the year: minimum of process load factor and resource load factors
                for key in input_data.get(f"{process_key}_resource_names", []):
                    if f"{key}_load_factor" in input_data:
                        resource_load_factor = _get_value_for_year(
                            input_data.get(f"{key}_load_factor"), year, 1.0
                        )
                        if resource_load_factor is not None:
                            process_load_factor = min(process_load_factor, resource_load_factor)
                # Compute the capital cost per unit of energy produced for the process
                mfsp_capex_process = (
                    self._spread_capital(
                        process_capex,
                        private_discount_rate,
                        process_lifespan,
                        process_construction_time,
                    )
                    / process_load_factor
                )

                output_data[f"{self.pathway_name}_{process_key}_capex_cost"].loc[
                    year - process_construction_time : year
                ] = _custom_series_addition(
                    output_data[f"{self.pathway_name}_{process_key}_capex_cost"].loc[
                        year - process_construction_time : year
                    ],
                    process_capex * needed_capacity / construction_time / process_load_factor,
                )

                # Get the variable and fixed opex for the process
                variable_opex_process = _get_value_for_year(
                    input_data.get(f"{process_key}_eis_variable_opex"),
                    year,
                    0.0,
                )
                fixed_opex_process = (
                    _get_value_for_year(
                        input_data.get(f"{process_key}_eis_fixed_opex"),
                        year,
                        0.0,
                    )
                    / process_load_factor
                )
                # Compute the MFSP for the process
                mfsp_process = mfsp_capex_process + variable_opex_process + fixed_opex_process
                # Add the MFSP for the process to the pathway MFSP
                vintage_mfsp = _custom_series_addition(vintage_mfsp, mfsp_process)
                # Store the process cost in the output data
                output_data[
                    f"{self.pathway_name}_{process_key}_mean_unit_cost_without_resources"
                ].loc[year : year + process_lifespan] = _custom_series_addition(
                    output_data[
                        f"{self.pathway_name}_{process_key}_mean_unit_cost_without_resources"
                    ].loc[year : year + process_lifespan],
                    mfsp_process * relative_share,
                )
                output_data[f"{self.pathway_name}_{process_key}_mean_unit_capex"].loc[
                    year : year + lifespan - 1
                ] = _custom_series_addition(
                    output_data[f"{self.pathway_name}_{process_key}_mean_unit_capex"].loc[
                        year : year + lifespan - 1
                    ],
                    mfsp_capex_process * relative_share,
                )
                # compyte the EIS unitary capex
                output_data[f"{self.pathway_name}_{process_key}_vintage_unit_capex"].loc[
                    year
                ] = mfsp_capex_process

                output_data[f"{self.pathway_name}_{process_key}_mean_unit_fixed_opex"].loc[
                    year : year + lifespan - 1
                ] = _custom_series_addition(
                    output_data[f"{self.pathway_name}_{process_key}_mean_unit_fixed_opex"].loc[
                        year : year + lifespan - 1
                    ],
                    fixed_opex_process * relative_share,
                )
                # compyte the EIS fixed opex
                output_data[f"{self.pathway_name}_{process_key}_vintage_unit_fixed_opex"].loc[
                    year
                ] = fixed_opex_process

                output_data[f"{self.pathway_name}_{process_key}_mean_unit_variable_opex"].loc[
                    year : year + lifespan - 1
                ] = _custom_series_addition(
                    output_data[
                        f"{self.pathway_name}_{process_key}_mean_unit_variable_opex"
                    ].loc[year : year + lifespan - 1],
                    variable_opex_process * relative_share,
                )

                # compyte the EIS variable opex
                output_data[
                    f"{self.pathway_name}_{process_key}_vintage_unit_variable_opex"
                ].loc[year] = variable_opex_process

            output_data[f"{self.pathway_name}_mean_mfsp"].loc[year : year + lifespan - 1] = (
                _custom_series_addition(
                    output_data[f"{self.pathway_name}_mean_mfsp"].loc[
                        year : year + lifespan - 1
                    ],
                    vintage_mfsp * relative_share,
                )
            )

            # marginal mfsp: is the new vintage the marginal one at some point of the scenario?
            # Slice the relevant part
            target = output_data[f"{self.pathway_name}_marginal_mfsp"].loc[
                year : year + lifespan - 1
            ]
            # Find common indices
            common_index = target.index.intersection(vintage_mfsp.index)
            # Align both Series
            target_common = target.loc[common_index]
            vintage_common = vintage_mfsp.loc[common_index]
            # Build mask:
            # (1) vintage > target
            # (2) or target is NaN and vintage is not NaN
            mask = (vintage_common > target_common) | (
                target_common.isna() & vintage_common.notna()
            )
            # Apply the update
            output_data[f"{self.pathway_name}_marginal_mfsp"].loc[common_index] = (
                target_common.where(~mask, vintage_common)
            )

            # compute discounted costs if necessary
            if self.compute_abatement_cost:
                if vintage_mfsp.notna().any():
                    discounted_mfsp = self._unitary_cumulative_discounted_costs_vintage(
                        mfsp_series=vintage_mfsp,
                        year=year,
                        plant_lifespan=lifespan,
                        discount_rate=input_data["social_discount_rate"],
                    )
                else:
                    discounted_mfsp = np.NaN
                output_data[f"{self.pathway_name}_lifespan_unitary_discounted_costs"][year] = (
                    discounted_mfsp
                )

    ### STEP 2: add taxes and subsidies like in TopDownCost model
    # Only pathway subsidies and taxes are considered here, not resources or processes taxes

    pathway_unit_subsidy_without_resource = input_data.get(
        f"{self.pathway_name}_mean_unit_subsidy_without_resource", optional_nan_series.copy()
    )

    pathway_unit_tax_without_resource = input_data.get(
        f"{self.pathway_name}_mean_unit_tax_without_resource", optional_nan_series.copy()
    )

    # Avoiding adding nans if subsidies and taxes defined for a shorter period of time than the mfsp
    pathway_net_mfsp_without_carbon_tax = _custom_series_addition(
        _custom_series_addition(
            output_data[f"{self.pathway_name}_mean_mfsp"], pathway_unit_tax_without_resource
        ),
        -pathway_unit_subsidy_without_resource,
    )

    # Handle possible differential carbon_tax
    if f"{self.pathway_name}_carbon_tax" in input_data:
        carbon_tax = (
            input_data[f"{self.pathway_name}_carbon_tax"] / 1000
        )  # converted to €/kgCO2
    else:
        carbon_tax = input_data["carbon_tax"] / 1000  # converted to €/kgCO2

    emission_factor = (
        input_data[f"{self.pathway_name}_mean_co2_emission_factor"] / 1000
    )  # converted to kgCO2/MJ
    pathway_unit_carbon_tax = carbon_tax * emission_factor

    if f"{self.pathway_name}_vintage_eis_co2_emission_factor" in input_data:
        vintage_eis_carbon_tax = (
            input_data[f"{self.pathway_name}_vintage_eis_co2_emission_factor"]
            / 1000
            * carbon_tax
        )
        output_data[f"{self.pathway_name}_vintage_eis_carbon_tax"] = vintage_eis_carbon_tax

    pathway_net_mfsp = _custom_series_addition(
        pathway_net_mfsp_without_carbon_tax, pathway_unit_carbon_tax
    )

    output_data.update(
        {
            f"{self.pathway_name}_net_mfsp_without_carbon_tax": pathway_net_mfsp_without_carbon_tax,
            f"{self.pathway_name}_net_mfsp": pathway_net_mfsp,
            f"{self.pathway_name}_mean_unit_tax": pathway_unit_tax_without_resource,
            f"{self.pathway_name}_mean_unit_carbon_tax": pathway_unit_carbon_tax,
            f"{self.pathway_name}_mean_unit_subsidy": pathway_unit_subsidy_without_resource,
        }
    )

    # Store the results in the df and retun

    self._store_outputs(output_data)

    return output_data