Skip to content

aeromaps.models.impacts.energy_resources.energy_resources

energy_resources

Module to model energy resources consumption.

EnergyResourceConsumption

EnergyResourceConsumption(name, configuration_data, pathways_manager, *args, **kwargs)

Bases: AeroMAPSModel

This class aggregates all pathways consumption for a given resource. Then, it compares it to availability and allocations. A class is instantiated for each resource defined in the resources .yaml file.

Parameters:

Name Type Description Default
name str

Name of the model instance ('f"{generic_resource}_consumption"' by default).

required
configuration_data dict

Configuration data dictionary for the resource from the resources .yaml file.

required
pathways_manager EnergyCarrierManager

EnergyCarrierManager instance to manage generic energy pathways and their data.

required

Attributes:

Name Type Description
input_names dict

Dictionary of input variable names populated at model initialisation before MDA chain creation.

output_names dict

Dictionary of output variable names populated at model initialisation before MDA chain creation.

Warnings
  • Detailed i/o documentation is not yet provided for models defined wityh generic .yaml files?
Source code in aeromaps/models/impacts/energy_resources/energy_resources.py
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
def __init__(
    self,
    name,
    configuration_data,
    pathways_manager: EnergyCarrierManager,
    *args,
    **kwargs,
):
    super().__init__(
        name=name,
        model_type="custom",
        # inputs/outputs are defined in __init__ rather than auto generated from compute() signature
        *args,
        **kwargs,
    )
    self.pathways_manager = pathways_manager
    # Get the name of the resource
    self.resource_name = configuration_data["name"]

    self.input_names = {}
    self.output_names = {}

    if f"{self.resource_name}_availability_global" in configuration_data["specifications"]:
        self.input_names[f"{self.resource_name}_availability_global"] = configuration_data[
            "specifications"
        ][f"{self.resource_name}_availability_global"]
        self.output_names.update(
            {
                f"{self.resource_name}_consumed_global_share": pd.Series([0.0]),
                f"{self.resource_name}_necessary_global_share_with_selectivity": pd.Series(
                    [0.0]
                ),
            }
        )
    if (
        f"{self.resource_name}_availability_aviation_allocated_share"
        in configuration_data["specifications"]
    ):
        self.input_names[f"{self.resource_name}_availability_aviation_allocated_share"] = (
            configuration_data[
                "specifications"
            ][f"{self.resource_name}_availability_aviation_allocated_share"]
        )
        self.output_names.update(
            {
                f"{self.resource_name}_consumed_aviation_allocated_share": pd.Series([0.0]),
            }
        )

    for pathway in self.pathways_manager.get(
        resources_used=self.resource_name
    ) + self.pathways_manager.get(resources_used_processes=self.resource_name):
        self.input_names.update(
            {
                f"{pathway.name}_{self.resource_name}_total_consumption": pd.Series([0.0]),
                f"{pathway.name}_{self.resource_name}_total_mobilised_with_selectivity": pd.Series(
                    [0.0]
                ),
            }
        )

    self.output_names.update(
        {
            f"{self.resource_name}_total_consumption": pd.Series([0.0]),
            f"{self.resource_name}_total_necessary_with_selectivity": pd.Series([0.0]),
        }
    )

compute

compute(input_data)

Executes the computation of total resource consumption and comparison to availability and allocations.

Parameters:

Name Type Description Default
input_data

Dictionary containing all input data required for the computation, completed at model instantiation with information from yaml files and outputs of other models.

required

Returns:

Type Description
output_data

Dictionary containing all output data resulting from the computation. Contains outputs defined during model instantiation.

Source code in aeromaps/models/impacts/energy_resources/energy_resources.py
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
def compute(self, input_data) -> dict:
    """
    Executes the computation of total resource consumption and comparison to availability and allocations.

    Parameters
    ----------
    input_data
        Dictionary containing all input data required for the computation, completed at model instantiation with information from yaml files and outputs of other models.

    Returns
    -------
    output_data
        Dictionary containing all output data resulting from the computation. Contains outputs defined during model instantiation.

    """
    output_data = {}

    total_resource_consumption = pd.Series(
        0.0, index=range(self.prospection_start_year, self.end_year + 1)
    )
    total_resource_mobilised_with_selectivity = pd.Series(
        0.0, index=range(self.prospection_start_year, self.end_year + 1)
    )

    for pathway in self.pathways_manager.get(
        resources_used=self.resource_name
    ) + self.pathways_manager.get(resources_used_processes=self.resource_name):
        total_resource_consumption = _custom_series_addition(
            total_resource_consumption,
            input_data[f"{pathway.name}_{self.resource_name}_total_consumption"],
        )
        total_resource_mobilised_with_selectivity = _custom_series_addition(
            total_resource_mobilised_with_selectivity,
            input_data[f"{pathway.name}_{self.resource_name}_total_mobilised_with_selectivity"],
        )

    output_data[f"{self.resource_name}_total_consumption"] = total_resource_consumption
    output_data[f"{self.resource_name}_total_necessary_with_selectivity"] = (
        total_resource_mobilised_with_selectivity
    )

    if f"{self.resource_name}_availability_global" in input_data:
        output_data[f"{self.resource_name}_consumed_global_share"] = (
            total_resource_consumption
            / input_data[f"{self.resource_name}_availability_global"]
            * 100
        )
        output_data[f"{self.resource_name}_necessary_global_share_with_selectivity"] = (
            total_resource_mobilised_with_selectivity
            / input_data[f"{self.resource_name}_availability_global"]
            * 100
        )

    if f"{self.resource_name}_availability_aviation_allocated_share" in input_data:
        output_data[f"{self.resource_name}_consumed_aviation_allocated_share"] = (
            total_resource_consumption
            / (
                input_data[f"{self.resource_name}_availability_global"]
                * input_data[f"{self.resource_name}_availability_aviation_allocated_share"]
                / 100
            )
            * 100
        )

    self._store_outputs(output_data)

    return output_data

OverallResourcesConsumption

OverallResourcesConsumption(name, resources_data, *args, **kwargs)

Bases: AeroMAPSModel

Aggregates total consumption and shares for all resources according to their origin and using outputs from EnergyResourceConsumption. Only one instance of this class is created for all resources.

Parameters:

Name Type Description Default
name str

Name of the model instance ('overall_resources_consumption' by default).

required
resources_data dict

Dictionary containing configuration data for all resources from the resources .yaml file.

required

Attributes:

Name Type Description
input_names dict

Dictionary of input variable names populated at model initialisation before MDA chain creation.

output_names dict

Dictionary of output variable names populated at model initialisation before MDA chain creation.

Warning
  • Detailed i/o documentation is not yet provided for models defined wityh generic .yaml files
Source code in aeromaps/models/impacts/energy_resources/energy_resources.py
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
def __init__(
    self,
    name,
    resources_data,
    *args,
    **kwargs,
):
    super().__init__(
        name=name,
        model_type="custom",
        *args,
        **kwargs,
    )

    # keep only resources whose availability is defined
    self.resources_names_origins = {
        resource: resources_data[resource].get("origin", "unknown")
        for resource in resources_data.keys()
        if f"{resource}_availability_global" in resources_data[resource]["specifications"]
    }

    # getting the unique origins of the resources
    self.resources_origins = set(self.resources_names_origins.values())

    self.resources_names = list(self.resources_names_origins.keys())

    # Dynamically build input/output names for all resources
    self.input_names = {}
    self.output_names = {}
    for resource in self.resources_names:
        self.input_names[f"{resource}_total_consumption"] = pd.Series([0.0])
        self.input_names[f"{resource}_total_necessary_with_selectivity"] = pd.Series([0.0])
        self.input_names[f"{resource}_availability_global"] = resources_data[resource][
            "specifications"
        ][f"{resource}_availability_global"]
        # Todo make this conditional
        self.input_names[f"{resource}_availability_aviation_allocated_share"] = resources_data[
            resource
        ]["specifications"][f"{resource}_availability_aviation_allocated_share"]

    for origin in self.resources_origins:
        self.output_names[f"{origin}_total_consumption"] = pd.Series([0.0])
        self.output_names[f"{origin}_total_necessary_with_selectivity"] = pd.Series([0.0])
        self.output_names[f"{origin}_availability_global"] = pd.Series([0.0])
        self.output_names[f"{origin}_availability_aviation_allocated"] = pd.Series([0.0])
        self.output_names[f"{origin}_consumed_global_share"] = pd.Series([0.0])
        self.output_names[f"{origin}_consumed_aviation_allocated_share"] = pd.Series([0.0])
        self.output_names[f"{origin}_necessary_global_share_with_selectivity"] = pd.Series(
            [0.0]
        )
        self.output_names[f"{origin}_overall_aviation_allocated_share"] = pd.Series([0.0])

compute

compute(input_data)

Executes the computation of overall resource consumption for all origins and comparison to availability and allocations.

Parameters:

Name Type Description Default
input_data

Dictionary containing all input data required for the computation, completed at model instantiation with information from yaml files and outputs of other models.

required

Returns:

Type Description
output_data

Dictionary containing all output data resulting from the computation. Contains outputs defined during model instantiation.

Source code in aeromaps/models/impacts/energy_resources/energy_resources.py
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
def compute(self, input_data) -> dict:
    """
    Executes the computation of overall resource consumption for all origins and comparison to availability and allocations.

    Parameters
    ----------
    input_data
        Dictionary containing all input data required for the computation, completed at model instantiation with information from yaml files and outputs of other models.

    Returns
    -------
    output_data
        Dictionary containing all output data resulting from the computation. Contains outputs defined during model instantiation.

    """
    output_data = {}

    index = range(self.prospection_start_year, self.end_year + 1)

    # Prepare aggregation by origin
    origin_consumption = {
        origin: pd.Series(0.0, index=index) for origin in self.resources_origins
    }
    origin_necessary = {
        origin: pd.Series(0.0, index=index) for origin in self.resources_origins
    }
    origin_availability = {
        origin: pd.Series(0.0, index=index) for origin in self.resources_origins
    }
    origin_availability_aviation_allocated = {
        origin: pd.Series(0.0, index=index) for origin in self.resources_origins
    }

    # Aggregate by origin
    for resource in self.resources_names:
        origin = self.resources_names_origins.get(resource, None)
        if origin is None:
            print(
                f"Warning: No origin found for resource:{resource}, aggregate shares not computed."
            )
            continue
        else:
            origin = origin

        total_consumption = input_data[f"{resource}_total_consumption"]
        total_necessary = input_data[f"{resource}_total_necessary_with_selectivity"]
        availability = input_data[f"{resource}_availability_global"]
        availability_aviation_allocated = (
            input_data[f"{resource}_availability_aviation_allocated_share"] / 100 * availability
        )

        origin_consumption[origin] = _custom_series_addition(
            origin_consumption[origin], total_consumption
        )
        origin_necessary[origin] = _custom_series_addition(
            origin_necessary[origin], total_necessary
        )
        origin_availability[origin] += availability
        origin_availability_aviation_allocated[origin] += availability_aviation_allocated

    # Compute shares for each origin
    for origin in self.resources_origins:
        total_consumption = origin_consumption[origin]
        total_necessary = origin_necessary[origin]
        total_availability = origin_availability[origin]
        total_availability_aviation_allocated = origin_availability_aviation_allocated[origin]

        consumed_global_share = total_consumption / total_availability * 100
        necessary_global_share_with_selectivity = total_necessary / total_availability * 100
        # Aviation allocated share in percent
        consumed_aviation_allocated_share = (
            total_consumption / total_availability_aviation_allocated * 100
        )
        overall_aviation_allocated_share = (
            total_availability_aviation_allocated / total_availability * 100
        )

        output_data[f"{origin}_total_consumption"] = total_consumption
        output_data[f"{origin}_total_necessary_with_selectivity"] = total_necessary
        output_data[f"{origin}_consumed_global_share"] = consumed_global_share
        output_data[f"{origin}_necessary_global_share_with_selectivity"] = (
            necessary_global_share_with_selectivity
        )
        output_data[f"{origin}_overall_aviation_allocated_share"] = (
            overall_aviation_allocated_share
        )
        output_data[f"{origin}_consumed_aviation_allocated_share"] = (
            consumed_aviation_allocated_share
        )
        output_data[f"{origin}_availability_global"] = total_availability
        output_data[f"{origin}_availability_aviation_allocated"] = (
            total_availability_aviation_allocated
        )

    self._store_outputs(output_data)
    return output_data