Skip to content

aeromaps.models.air_transport.air_traffic.rpk

rpk

Module for computing air traffic (RPK) without price elasticity and effect of ad-hoc measures to reduce traffic.

RPK

RPK(name='rpk', *args, **kwargs)

Bases: AeroMAPSModel

Class to compute traffic (RPK) without price elasticity considering COVID-19 impact and exogenous growth rates by segment.

Parameters:

Name Type Description Default
name str

Name of the model instance ('rpk' by default).

'rpk'
Source code in aeromaps/models/air_transport/air_traffic/rpk.py
28
29
def __init__(self, name="rpk", *args, **kwargs):
    super().__init__(name=name, *args, **kwargs)

compute

compute(rpk_init, short_range_rpk_share_2019, medium_range_rpk_share_2019, long_range_rpk_share_2019, covid_start_year, covid_rpk_drop_start_year, covid_end_year_passenger, covid_end_year_reference_rpk_ratio, cagr_passenger_short_range_reference_periods, cagr_passenger_short_range_reference_periods_values, cagr_passenger_medium_range_reference_periods, cagr_passenger_medium_range_reference_periods_values, cagr_passenger_long_range_reference_periods, cagr_passenger_long_range_reference_periods_values, rpk_short_range_measures_impact, rpk_medium_range_measures_impact, rpk_long_range_measures_impact)

RPK calculation.

Parameters:

Name Type Description Default
rpk_init Series

Historical number of Revenue Passenger Kilometer (RPK) over 2000-2019 [RPK].

required
short_range_rpk_share_2019 float

Share of RPK from short-range market in 2019 [%].

required
medium_range_rpk_share_2019 float

Share of RPK from medium-range market in 2019 [%].

required
long_range_rpk_share_2019 float

Share of RPK from long-range market in 2019 [%].

required
covid_start_year Number

Covid-19 start year [yr].

required
covid_rpk_drop_start_year float

Drop in RPK due to Covid-19 for the start year [%].

required
covid_end_year_passenger Number

Covid-19 end year [yr].

required
covid_end_year_reference_rpk_ratio float

Percentage of traffic level reached in Covid-19 end year compared with the one in Covid-19 start year [%].

required
cagr_passenger_short_range_reference_periods list

Reference periods for the CAGR for passenger short-range market [yr].

required
cagr_passenger_short_range_reference_periods_values list

CAGR for passenger short-range market for the reference periods [%].

required
cagr_passenger_medium_range_reference_periods list

Reference periods for the CAGR for passenger medium-range market [yr].

required
cagr_passenger_medium_range_reference_periods_values list

CAGR for passenger medium-range market for the reference periods [%].

required
cagr_passenger_long_range_reference_periods list

Reference periods for the CAGR for passenger long-range market [yr].

required
cagr_passenger_long_range_reference_periods_values list

CAGR for passenger long-range market for the reference periods [%].

required
rpk_short_range_measures_impact Series

Traffic reduction impact of specific measures for passenger short-range market [%].

required
rpk_medium_range_measures_impact Series

Traffic reduction impact of specific measures for passenger medium-range market [%].

required
rpk_long_range_measures_impact Series

Traffic reduction impact of specific measures for passenger long-range market [%].

required

Returns:

Name Type Description
rpk_short_range Series

Number of Revenue Passenger Kilometer (RPK) for passenger short-range market [RPK].

rpk_medium_range Series

Number of Revenue Passenger Kilometer (RPK) for passenger medium-range market [RPK].

rpk_long_range Series

Number of Revenue Passenger Kilometer (RPK) for passenger long-range market [RPK].

rpk Series

Number of Revenue Passenger Kilometer (RPK) for total passenger air transport [RPK].

annual_growth_rate_passenger_short_range Series

Annual growth rate for short-range passengers [%/year].

annual_growth_rate_passenger_medium_range Series

Annual growth rate for medium-range passengers [%/year].

annual_growth_rate_passenger_long_range Series

Annual growth rate for long-range passengers [%/year].

annual_growth_rate_passenger Series

Annual growth rate for total passengers [%/year].

cagr_rpk_short_range float

Air traffic CAGR over prospective_years for passenger short-range market [%].

cagr_rpk_medium_range float

Air traffic CAGR over prospective_years for passenger medium-range market [%].

cagr_rpk_long_range float

Air traffic CAGR over prospective_years for passenger long-range market [%].

cagr_rpk float

Air traffic CAGR over prospective_years for total passenger market [%].

prospective_evolution_rpk_short_range float

Evolution in percentage of Revenue Passenger Kilometer (RPK) for passenger short-range market between prospection_start_year and end_year [%].

prospective_evolution_rpk_medium_range float

Evolution in percentage of Revenue Passenger Kilometer (RPK) for passenger medium-range market between prospection_start_year and end_year [%].

prospective_evolution_rpk_long_range float

Evolution in percentage of Revenue Passenger Kilometer (RPK) for passenger long-range market between prospection_start_year and end_year [%].

prospective_evolution_rpk float

Evolution in percentage of Revenue Passenger Kilometer (RPK) for total passenger market between prospection_start_year and end_year [%].

Source code in aeromaps/models/air_transport/air_traffic/rpk.py
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
def compute(
    self,
    rpk_init: pd.Series,
    short_range_rpk_share_2019: float,
    medium_range_rpk_share_2019: float,
    long_range_rpk_share_2019: float,
    covid_start_year: Number,
    covid_rpk_drop_start_year: float,
    covid_end_year_passenger: Number,
    covid_end_year_reference_rpk_ratio: float,
    cagr_passenger_short_range_reference_periods: list,
    cagr_passenger_short_range_reference_periods_values: list,
    cagr_passenger_medium_range_reference_periods: list,
    cagr_passenger_medium_range_reference_periods_values: list,
    cagr_passenger_long_range_reference_periods: list,
    cagr_passenger_long_range_reference_periods_values: list,
    rpk_short_range_measures_impact: pd.Series,
    rpk_medium_range_measures_impact: pd.Series,
    rpk_long_range_measures_impact: pd.Series,
) -> Tuple[
    pd.Series,
    pd.Series,
    pd.Series,
    pd.Series,
    pd.Series,
    pd.Series,
    pd.Series,
    pd.Series,
    float,
    float,
    float,
    float,
    float,
    float,
    float,
    float,
]:
    """
    RPK calculation.

    Parameters
    ----------
    rpk_init : pd.Series
        Historical number of Revenue Passenger Kilometer (RPK) over 2000-2019 [RPK].
    short_range_rpk_share_2019 : float
        Share of RPK from short-range market in 2019 [%].
    medium_range_rpk_share_2019 : float
        Share of RPK from medium-range market in 2019 [%].
    long_range_rpk_share_2019 : float
        Share of RPK from long-range market in 2019 [%].
    covid_start_year : Number
        Covid-19 start year [yr].
    covid_rpk_drop_start_year : float
        Drop in RPK due to Covid-19 for the start year [%].
    covid_end_year_passenger : Number
        Covid-19 end year [yr].
    covid_end_year_reference_rpk_ratio : float
        Percentage of traffic level reached in Covid-19 end year compared with the one in Covid-19 start year [%].
    cagr_passenger_short_range_reference_periods : list
        Reference periods for the CAGR for passenger short-range market [yr].
    cagr_passenger_short_range_reference_periods_values : list
        CAGR for passenger short-range market for the reference periods [%].
    cagr_passenger_medium_range_reference_periods : list
        Reference periods for the CAGR for passenger medium-range market [yr].
    cagr_passenger_medium_range_reference_periods_values : list
        CAGR for passenger medium-range market for the reference periods [%].
    cagr_passenger_long_range_reference_periods : list
        Reference periods for the CAGR for passenger long-range market [yr].
    cagr_passenger_long_range_reference_periods_values : list
        CAGR for passenger long-range market for the reference periods [%].
    rpk_short_range_measures_impact : pd.Series
        Traffic reduction impact of specific measures for passenger short-range market [%].
    rpk_medium_range_measures_impact : pd.Series
        Traffic reduction impact of specific measures for passenger medium-range market [%].
    rpk_long_range_measures_impact : pd.Series
        Traffic reduction impact of specific measures for passenger long-range market [%].

    Returns
    -------
    rpk_short_range : pd.Series
        Number of Revenue Passenger Kilometer (RPK) for passenger short-range market [RPK].
    rpk_medium_range : pd.Series
        Number of Revenue Passenger Kilometer (RPK) for passenger medium-range market [RPK].
    rpk_long_range : pd.Series
        Number of Revenue Passenger Kilometer (RPK) for passenger long-range market [RPK].
    rpk : pd.Series
        Number of Revenue Passenger Kilometer (RPK) for total passenger air transport [RPK].
    annual_growth_rate_passenger_short_range : pd.Series
        Annual growth rate for short-range passengers [%/year].
    annual_growth_rate_passenger_medium_range : pd.Series
        Annual growth rate for medium-range passengers [%/year].
    annual_growth_rate_passenger_long_range : pd.Series
        Annual growth rate for long-range passengers [%/year].
    annual_growth_rate_passenger : pd.Series
        Annual growth rate for total passengers [%/year].
    cagr_rpk_short_range : float
        Air traffic CAGR over prospective_years for passenger short-range market [%].
    cagr_rpk_medium_range : float
        Air traffic CAGR over prospective_years for passenger medium-range market [%].
    cagr_rpk_long_range : float
        Air traffic CAGR over prospective_years for passenger long-range market [%].
    cagr_rpk : float
        Air traffic CAGR over prospective_years for total passenger market [%].
    prospective_evolution_rpk_short_range : float
        Evolution in percentage of Revenue Passenger Kilometer (RPK) for passenger short-range market between prospection_start_year and end_year [%].
    prospective_evolution_rpk_medium_range : float
        Evolution in percentage of Revenue Passenger Kilometer (RPK) for passenger medium-range market between prospection_start_year and end_year [%].
    prospective_evolution_rpk_long_range : float
        Evolution in percentage of Revenue Passenger Kilometer (RPK) for passenger long-range market between prospection_start_year and end_year [%].
    prospective_evolution_rpk : float
        Evolution in percentage of Revenue Passenger Kilometer (RPK) for total passenger market between prospection_start_year and end_year [%].
    """
    # Initialization based on 2019 share
    for k in range(self.historic_start_year, self.prospection_start_year):
        self.df.loc[k, "rpk_short_range"] = short_range_rpk_share_2019 / 100 * rpk_init.loc[k]
        self.df.loc[k, "rpk_medium_range"] = medium_range_rpk_share_2019 / 100 * rpk_init.loc[k]
        self.df.loc[k, "rpk_long_range"] = long_range_rpk_share_2019 / 100 * rpk_init.loc[k]

    # Covid functions
    reference_years = [covid_start_year, covid_end_year_passenger]
    reference_values_covid = [
        1 - covid_rpk_drop_start_year / 100,
        covid_end_year_reference_rpk_ratio / 100,
    ]
    covid_function = interp1d(reference_years, reference_values_covid, kind="linear")

    # CAGR function
    ## Short range
    annual_growth_rate_passenger_short_range_prospective = aeromaps_leveling_function(
        self,
        cagr_passenger_short_range_reference_periods,
        cagr_passenger_short_range_reference_periods_values,
        model_name=self.name,
    )
    self.df.loc[:, "annual_growth_rate_passenger_short_range"] = (
        annual_growth_rate_passenger_short_range_prospective
    )
    ## Medium range
    annual_growth_rate_passenger_medium_range_prospective = aeromaps_leveling_function(
        self,
        cagr_passenger_medium_range_reference_periods,
        cagr_passenger_medium_range_reference_periods_values,
        model_name=self.name,
    )
    self.df.loc[:, "annual_growth_rate_passenger_medium_range"] = (
        annual_growth_rate_passenger_medium_range_prospective
    )
    ## Long range
    annual_growth_rate_passenger_long_range_prospective = aeromaps_leveling_function(
        self,
        cagr_passenger_long_range_reference_periods,
        cagr_passenger_long_range_reference_periods_values,
        model_name=self.name,
    )
    self.df.loc[:, "annual_growth_rate_passenger_long_range"] = (
        annual_growth_rate_passenger_long_range_prospective
    )

    # Short range
    for k in range(covid_start_year, covid_end_year_passenger + 1):
        self.df.loc[k, "rpk_short_range"] = self.df.loc[
            covid_start_year - 1, "rpk_short_range"
        ] * covid_function(k)
    for k in range(covid_end_year_passenger + 1, self.end_year + 1):
        self.df.loc[k, "rpk_short_range"] = self.df.loc[k - 1, "rpk_short_range"] * (
            1 + self.df.loc[k, "annual_growth_rate_passenger_short_range"] / 100
        )

    # Medium range
    for k in range(covid_start_year, covid_end_year_passenger + 1):
        self.df.loc[k, "rpk_medium_range"] = self.df.loc[
            covid_start_year - 1, "rpk_medium_range"
        ] * covid_function(k)
    for k in range(covid_end_year_passenger + 1, self.end_year + 1):
        self.df.loc[k, "rpk_medium_range"] = self.df.loc[k - 1, "rpk_medium_range"] * (
            1 + self.df.loc[k, "annual_growth_rate_passenger_medium_range"] / 100
        )

    # Long range
    for k in range(covid_start_year, covid_end_year_passenger + 1):
        self.df.loc[k, "rpk_long_range"] = self.df.loc[
            covid_start_year - 1, "rpk_long_range"
        ] * covid_function(k)
    for k in range(covid_end_year_passenger + 1, self.end_year + 1):
        self.df.loc[k, "rpk_long_range"] = self.df.loc[k - 1, "rpk_long_range"] * (
            1 + self.df.loc[k, "annual_growth_rate_passenger_long_range"] / 100
        )

    rpk_short_range = self.df["rpk_short_range"]
    rpk_medium_range = self.df["rpk_medium_range"]
    rpk_long_range = self.df["rpk_long_range"]

    rpk_short_range = rpk_short_range * rpk_short_range_measures_impact
    rpk_medium_range = rpk_medium_range * rpk_medium_range_measures_impact
    rpk_long_range = rpk_long_range * rpk_long_range_measures_impact

    self.df.loc[:, "rpk_short_range"] = rpk_short_range
    self.df.loc[:, "rpk_medium_range"] = rpk_medium_range
    self.df.loc[:, "rpk_long_range"] = rpk_long_range

    # Total
    for k in range(self.historic_start_year, self.prospection_start_year):
        self.df.loc[k, "rpk"] = rpk_init.loc[k]
    for k in range(self.prospection_start_year, self.end_year + 1):
        self.df.loc[k, "rpk"] = (
            self.df.loc[k, "rpk_short_range"]
            + self.df.loc[k, "rpk_medium_range"]
            + self.df.loc[k, "rpk_long_range"]
        )
    rpk = self.df["rpk"]

    # Annual growth rate
    for k in range(self.historic_start_year + 1, self.prospection_start_year):
        self.df.loc[k, "annual_growth_rate_passenger_short_range"] = (
            self.df.loc[k, "rpk_short_range"] / self.df.loc[k - 1, "rpk_short_range"] - 1
        ) * 100
    for k in range(self.historic_start_year + 1, self.prospection_start_year):
        self.df.loc[k, "annual_growth_rate_passenger_medium_range"] = (
            self.df.loc[k, "rpk_medium_range"] / self.df.loc[k - 1, "rpk_medium_range"] - 1
        ) * 100
    for k in range(self.historic_start_year + 1, self.prospection_start_year):
        self.df.loc[k, "annual_growth_rate_passenger_long_range"] = (
            self.df.loc[k, "rpk_long_range"] / self.df.loc[k - 1, "rpk_long_range"] - 1
        ) * 100
    for k in range(self.historic_start_year + 1, self.end_year + 1):
        self.df.loc[k, "annual_growth_rate_passenger"] = (
            self.df.loc[k, "rpk"] / self.df.loc[k - 1, "rpk"] - 1
        ) * 100

    annual_growth_rate_passenger_short_range = self.df[
        "annual_growth_rate_passenger_short_range"
    ]
    annual_growth_rate_passenger_medium_range = self.df[
        "annual_growth_rate_passenger_medium_range"
    ]
    annual_growth_rate_passenger_long_range = self.df["annual_growth_rate_passenger_long_range"]
    annual_growth_rate_passenger = self.df["annual_growth_rate_passenger"]

    # Compound Annual Growth Rate (CAGR)
    cagr_rpk_short_range = 100 * (
        (
            self.df.loc[self.end_year, "rpk_short_range"]
            / self.df.loc[self.prospection_start_year - 1, "rpk_short_range"]
        )
        ** (1 / (self.end_year - self.prospection_start_year))
        - 1
    )
    cagr_rpk_medium_range = 100 * (
        (
            self.df.loc[self.end_year, "rpk_medium_range"]
            / self.df.loc[self.prospection_start_year - 1, "rpk_medium_range"]
        )
        ** (1 / (self.end_year - self.prospection_start_year))
        - 1
    )
    cagr_rpk_long_range = 100 * (
        (
            self.df.loc[self.end_year, "rpk_long_range"]
            / self.df.loc[self.prospection_start_year - 1, "rpk_long_range"]
        )
        ** (1 / (self.end_year - self.prospection_start_year))
        - 1
    )
    cagr_rpk = 100 * (
        (
            self.df.loc[self.end_year, "rpk"]
            / self.df.loc[self.prospection_start_year - 1, "rpk"]
        )
        ** (1 / (self.end_year - self.prospection_start_year))
        - 1
    )

    # Prospective evolution of RPK (between prospection_start_year-1 and end_year)
    prospective_evolution_rpk_short_range = 100 * (
        self.df.loc[self.end_year, "rpk_short_range"]
        / self.df.loc[self.prospection_start_year - 1, "rpk_short_range"]
        - 1
    )
    prospective_evolution_rpk_medium_range = 100 * (
        self.df.loc[self.end_year, "rpk_medium_range"]
        / self.df.loc[self.prospection_start_year - 1, "rpk_medium_range"]
        - 1
    )
    prospective_evolution_rpk_long_range = 100 * (
        self.df.loc[self.end_year, "rpk_long_range"]
        / self.df.loc[self.prospection_start_year - 1, "rpk_long_range"]
        - 1
    )
    prospective_evolution_rpk = 100 * (
        self.df.loc[self.end_year, "rpk"] / self.df.loc[self.prospection_start_year - 1, "rpk"]
        - 1
    )

    self.float_outputs["cagr_rpk_short_range"] = cagr_rpk_short_range
    self.float_outputs["cagr_rpk_medium_range"] = cagr_rpk_medium_range
    self.float_outputs["cagr_rpk_long_range"] = cagr_rpk_long_range
    self.float_outputs["cagr_rpk"] = cagr_rpk
    self.float_outputs["prospective_evolution_rpk_short_range"] = (
        prospective_evolution_rpk_short_range
    )
    self.float_outputs["prospective_evolution_rpk_medium_range"] = (
        prospective_evolution_rpk_medium_range
    )
    self.float_outputs["prospective_evolution_rpk_long_range"] = (
        prospective_evolution_rpk_long_range
    )
    self.float_outputs["prospective_evolution_rpk"] = prospective_evolution_rpk

    return (
        rpk_short_range,
        rpk_medium_range,
        rpk_long_range,
        rpk,
        annual_growth_rate_passenger_short_range,
        annual_growth_rate_passenger_medium_range,
        annual_growth_rate_passenger_long_range,
        annual_growth_rate_passenger,
        cagr_rpk_short_range,
        cagr_rpk_medium_range,
        cagr_rpk_long_range,
        cagr_rpk,
        prospective_evolution_rpk_short_range,
        prospective_evolution_rpk_medium_range,
        prospective_evolution_rpk_long_range,
        prospective_evolution_rpk,
    )

RPKReference

RPKReference(name='rpk_reference', *args, **kwargs)

Bases: AeroMAPSModel

Class to compute reference Revenue Passenger Kilometers (RPK) with baseline air traffic growth.

Parameters:

Name Type Description Default
name str

Name of the model instance ('rpk_reference' by default).

'rpk_reference'
Source code in aeromaps/models/air_transport/air_traffic/rpk.py
369
370
def __init__(self, name="rpk_reference", *args, **kwargs):
    super().__init__(name=name, *args, **kwargs)

compute

compute(rpk, reference_cagr_passenger_reference_periods, reference_cagr_passenger_reference_periods_values, covid_start_year, covid_rpk_drop_start_year, covid_end_year_passenger, covid_end_year_reference_rpk_ratio)

RPK reference calculation.

Parameters:

Name Type Description Default
rpk Series

Number of Revenue Passenger Kilometer (RPK) for all passenger air transport [RPK].

required
reference_cagr_passenger_reference_periods list

Reference periods for the reference CAGR for passenger market [yr].

required
reference_cagr_passenger_reference_periods_values list

Reference CAGR for passenger market for the reference periods [%].

required
covid_start_year Number

Covid-19 start year [yr].

required
covid_rpk_drop_start_year float

Drop in RPK due to Covid-19 for the start year [%].

required
covid_end_year_passenger Number

Covid-19 end year [yr].

required
covid_end_year_reference_rpk_ratio float

Percentage of traffic level reached in Covid-19 end year compared with the one in Covid-19 start year [%].

required

Returns:

Name Type Description
rpk_reference Series

Number of Revenue Passenger Kilometer (RPK) for all passenger air transport with a baseline air traffic growth [RPK].

reference_annual_growth_rate_passenger Series

Reference annual growth rate for passenger market [%/year].

Source code in aeromaps/models/air_transport/air_traffic/rpk.py
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
def compute(
    self,
    rpk: pd.Series,
    reference_cagr_passenger_reference_periods: list,
    reference_cagr_passenger_reference_periods_values: list,
    covid_start_year: Number,
    covid_rpk_drop_start_year: float,
    covid_end_year_passenger: Number,
    covid_end_year_reference_rpk_ratio: float,
) -> Tuple[pd.Series, pd.Series]:
    """
    RPK reference calculation.

    Parameters
    ----------
    rpk : pd.Series
        Number of Revenue Passenger Kilometer (RPK) for all passenger air transport [RPK].
    reference_cagr_passenger_reference_periods : list
        Reference periods for the reference CAGR for passenger market [yr].
    reference_cagr_passenger_reference_periods_values : list
        Reference CAGR for passenger market for the reference periods [%].
    covid_start_year : Number
        Covid-19 start year [yr].
    covid_rpk_drop_start_year : float
        Drop in RPK due to Covid-19 for the start year [%].
    covid_end_year_passenger : Number
        Covid-19 end year [yr].
    covid_end_year_reference_rpk_ratio : float
        Percentage of traffic level reached in Covid-19 end year compared with the one in Covid-19 start year [%].

    Returns
    -------
    rpk_reference : pd.Series
        Number of Revenue Passenger Kilometer (RPK) for all passenger air transport with a baseline air traffic growth [RPK].
    reference_annual_growth_rate_passenger : pd.Series
        Reference annual growth rate for passenger market [%/year].
    """
    for k in range(self.historic_start_year, self.prospection_start_year):
        self.df.loc[k, "rpk_reference"] = rpk.loc[k]

    covid_start_year = int(covid_start_year)
    covid_rpk_drop_start_year = int(covid_rpk_drop_start_year)
    covid_end_year_passenger = int(covid_end_year_passenger)
    covid_end_year_reference_rpk_ratio = int(covid_end_year_reference_rpk_ratio)

    self.df.loc[covid_start_year - 1, "rpk_reference"] = rpk.loc[covid_start_year - 1]

    # Covid functions
    reference_years = [covid_start_year, covid_end_year_passenger]
    reference_values_covid = [
        1 - covid_rpk_drop_start_year / 100,
        covid_end_year_reference_rpk_ratio / 100,
    ]
    covid_function = interp1d(reference_years, reference_values_covid, kind="linear")

    # CAGR function
    reference_annual_growth_rate_passenger = aeromaps_leveling_function(
        self,
        reference_cagr_passenger_reference_periods,
        reference_cagr_passenger_reference_periods_values,
        model_name=self.name,
    )
    self.df.loc[:, "reference_annual_growth_rate_passenger"] = (
        reference_annual_growth_rate_passenger
    )

    # Main
    for k in range(covid_start_year, covid_end_year_passenger + 1):
        self.df.loc[k, "rpk_reference"] = self.df.loc[
            covid_start_year - 1, "rpk_reference"
        ] * covid_function(k)
    for k in range(covid_end_year_passenger + 1, self.end_year + 1):
        self.df.loc[k, "rpk_reference"] = self.df.loc[k - 1, "rpk_reference"] * (
            1 + self.df.loc[k, "reference_annual_growth_rate_passenger"] / 100
        )

    rpk_reference = self.df["rpk_reference"]

    return (rpk_reference, reference_annual_growth_rate_passenger)

RPKMeasures

RPKMeasures(name='rpk_measures', *args, **kwargs)

Bases: AeroMAPSModel

Class to compute the impact of ad-hoc measures to reduce short, medium, and long-range traffic.

Parameters:

Name Type Description Default
name str

Name of the model instance ('rpk_measures' by default).

'rpk_measures'
Source code in aeromaps/models/air_transport/air_traffic/rpk.py
463
464
def __init__(self, name="rpk_measures", *args, **kwargs):
    super().__init__(name=name, *args, **kwargs)

compute

compute(rpk_short_range_measures_final_impact, rpk_medium_range_measures_final_impact, rpk_long_range_measures_final_impact, rpk_short_range_measures_start_year, rpk_medium_range_measures_start_year, rpk_long_range_measures_start_year, rpk_short_range_measures_duration, rpk_medium_range_measures_duration, rpk_long_range_measures_duration)

RPK measures impact calculation.

Parameters:

Name Type Description Default
rpk_short_range_measures_final_impact float

Final impact of specific measures in terms of percentage reduction in RPK for short-range market [%].

required
rpk_medium_range_measures_final_impact float

Final impact of specific measures in terms of percentage reduction in RPK for medium-range market [%].

required
rpk_long_range_measures_final_impact float

Final impact of specific measures in terms of percentage reduction in RPK for long-range market [%].

required
rpk_short_range_measures_start_year Number

Start year for implementing specific measures to reduce RPK on short-range market [yr].

required
rpk_medium_range_measures_start_year Number

Start year for implementing specific measures to reduce RPK on medium-range market [yr].

required
rpk_long_range_measures_start_year Number

Start year for implementing specific measures to reduce RPK on long-range market [yr].

required
rpk_short_range_measures_duration float

Duration for implementing 98% of specific measures to reduce RPK on short-range market [yr].

required
rpk_medium_range_measures_duration float

Duration for implementing 98% of specific measures to reduce RPK on medium-range market [yr].

required
rpk_long_range_measures_duration float

Duration for implementing 98% of specific measures to reduce RPK on long-range market [yr].

required

Returns:

Name Type Description
rpk_short_range_measures_impact Series

Traffic reduction impact of specific measures for passenger short-range market [%].

rpk_medium_range_measures_impact Series

Traffic reduction impact of specific measures for passenger medium-range market [%].

rpk_long_range_measures_impact Series

Traffic reduction impact of specific measures for passenger long-range market [%].

Source code in aeromaps/models/air_transport/air_traffic/rpk.py
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
def compute(
    self,
    rpk_short_range_measures_final_impact: float,
    rpk_medium_range_measures_final_impact: float,
    rpk_long_range_measures_final_impact: float,
    rpk_short_range_measures_start_year: Number,
    rpk_medium_range_measures_start_year: Number,
    rpk_long_range_measures_start_year: Number,
    rpk_short_range_measures_duration: float,
    rpk_medium_range_measures_duration: float,
    rpk_long_range_measures_duration: float,
) -> Tuple[pd.Series, pd.Series, pd.Series]:
    """
    RPK measures impact calculation.

    Parameters
    ----------
    rpk_short_range_measures_final_impact : float
        Final impact of specific measures in terms of percentage reduction in RPK for short-range market [%].
    rpk_medium_range_measures_final_impact : float
        Final impact of specific measures in terms of percentage reduction in RPK for medium-range market [%].
    rpk_long_range_measures_final_impact : float
        Final impact of specific measures in terms of percentage reduction in RPK for long-range market [%].
    rpk_short_range_measures_start_year : Number
        Start year for implementing specific measures to reduce RPK on short-range market [yr].
    rpk_medium_range_measures_start_year : Number
        Start year for implementing specific measures to reduce RPK on medium-range market [yr].
    rpk_long_range_measures_start_year : Number
        Start year for implementing specific measures to reduce RPK on long-range market [yr].
    rpk_short_range_measures_duration : float
        Duration for implementing 98% of specific measures to reduce RPK on short-range market [yr].
    rpk_medium_range_measures_duration : float
        Duration for implementing 98% of specific measures to reduce RPK on medium-range market [yr].
    rpk_long_range_measures_duration : float
        Duration for implementing 98% of specific measures to reduce RPK on long-range market [yr].

    Returns
    -------
    rpk_short_range_measures_impact : pd.Series
        Traffic reduction impact of specific measures for passenger short-range market [%].
    rpk_medium_range_measures_impact : pd.Series
        Traffic reduction impact of specific measures for passenger medium-range market [%].
    rpk_long_range_measures_impact : pd.Series
        Traffic reduction impact of specific measures for passenger long-range market [%].
    """
    short_range_transition_year = (
        rpk_short_range_measures_start_year + rpk_short_range_measures_duration / 2
    )
    medium_range_transition_year = (
        rpk_medium_range_measures_start_year + rpk_medium_range_measures_duration / 2
    )
    long_range_transition_year = (
        rpk_long_range_measures_start_year + rpk_long_range_measures_duration / 2
    )
    rpk_short_range_measures_limit = 0.02 * rpk_short_range_measures_final_impact
    rpk_medium_range_measures_limit = 0.02 * rpk_medium_range_measures_final_impact
    rpk_long_range_measures_limit = 0.02 * rpk_long_range_measures_final_impact
    rpk_short_range_measures_parameter = np.log(100 / 2 - 1) / (
        rpk_short_range_measures_duration / 2
    )
    rpk_medium_range_measures_parameter = np.log(100 / 2 - 1) / (
        rpk_medium_range_measures_duration / 2
    )
    rpk_long_range_measures_parameter = np.log(100 / 2 - 1) / (
        rpk_long_range_measures_duration / 2
    )

    for k in range(self.historic_start_year, self.prospection_start_year):
        self.df.loc[k, "rpk_short_range_measures_impact"] = 1
        self.df.loc[k, "rpk_medium_range_measures_impact"] = 1
        self.df.loc[k, "rpk_long_range_measures_impact"] = 1

    for k in range(self.prospection_start_year - 1, self.end_year + 1):
        if (
            rpk_short_range_measures_final_impact
            / (
                1
                + np.exp(
                    -rpk_short_range_measures_parameter * (k - short_range_transition_year)
                )
            )
            < rpk_short_range_measures_limit
        ):
            self.df.loc[k, "rpk_short_range_measures_impact"] = 1
        else:
            self.df.loc[k, "rpk_short_range_measures_impact"] = (
                1
                - rpk_short_range_measures_final_impact
                / 100
                / (
                    1
                    + np.exp(
                        -rpk_short_range_measures_parameter * (k - short_range_transition_year)
                    )
                )
            )
        if (
            rpk_medium_range_measures_final_impact
            / (
                1
                + np.exp(
                    -rpk_medium_range_measures_parameter * (k - medium_range_transition_year)
                )
            )
            < rpk_medium_range_measures_limit
        ):
            self.df.loc[k, "rpk_medium_range_measures_impact"] = 1
        else:
            self.df.loc[k, "rpk_medium_range_measures_impact"] = (
                1
                - rpk_medium_range_measures_final_impact
                / 100
                / (
                    1
                    + np.exp(
                        -rpk_medium_range_measures_parameter
                        * (k - medium_range_transition_year)
                    )
                )
            )
        if (
            rpk_long_range_measures_final_impact
            / (
                1
                + np.exp(-rpk_long_range_measures_parameter * (k - long_range_transition_year))
            )
            < rpk_long_range_measures_limit
        ):
            self.df.loc[k, "rpk_long_range_measures_impact"] = 1
        else:
            self.df.loc[k, "rpk_long_range_measures_impact"] = (
                1
                - rpk_long_range_measures_final_impact
                / 100
                / (
                    1
                    + np.exp(
                        -rpk_long_range_measures_parameter * (k - long_range_transition_year)
                    )
                )
            )

    rpk_short_range_measures_impact = self.df["rpk_short_range_measures_impact"]
    rpk_medium_range_measures_impact = self.df["rpk_medium_range_measures_impact"]
    rpk_long_range_measures_impact = self.df["rpk_long_range_measures_impact"]

    return (
        rpk_short_range_measures_impact,
        rpk_medium_range_measures_impact,
        rpk_long_range_measures_impact,
    )