Skip to content

aeromaps.models.air_transport.air_traffic.price_elasticity

price_elasticity

Module for computing air traffic (RPK) with price elasticity effects.

RPKWithElasticity

RPKWithElasticity(name='rpk_with_elasticity', *args, **kwargs)

Bases: AeroMAPSModel

Class to compute Revenue Passenger Kilometers (RPK) with price elasticity and COVID-19 impact, considering exogenous growth rates by segment.

Parameters:

Name Type Description Default
name

Name of the model instance ('rpk_with_elasticity' by default).

'rpk_with_elasticity'
Source code in aeromaps/models/air_transport/air_traffic/price_elasticity.py
32
33
def __init__(self, name="rpk_with_elasticity", *args, **kwargs):
    super().__init__(name=name, *args, **kwargs)

compute

compute(rpk_init, short_range_rpk_share_2019, medium_range_rpk_share_2019, long_range_rpk_share_2019, covid_start_year, covid_rpk_drop_start_year, covid_end_year_passenger, covid_end_year_reference_rpk_ratio, cagr_passenger_short_range_reference_periods, cagr_passenger_short_range_reference_periods_values, cagr_passenger_medium_range_reference_periods, cagr_passenger_medium_range_reference_periods_values, cagr_passenger_long_range_reference_periods, cagr_passenger_long_range_reference_periods_values, rpk_short_range_measures_impact, rpk_medium_range_measures_impact, rpk_long_range_measures_impact, airfare_per_rpk, price_elasticity)

Execute the computation of prospective air traffic.

Parameters:

Name Type Description Default
rpk_init Series

Historical number of Revenue Passenger Kilometer (RPK) over 2000-2019 [RPK].

required
short_range_rpk_share_2019 float

Share of RPK from short-range market in 2019 [%].

required
medium_range_rpk_share_2019 float

Share of RPK from medium-range market in 2019 [%].

required
long_range_rpk_share_2019 float

Share of RPK from long-range market in 2019 [%].

required
covid_start_year Number

Covid-19 start year [yr].

required
covid_rpk_drop_start_year float

Drop in RPK due to Covid-19 for the start year [%].

required
covid_end_year_passenger Number

Covid-19 end year [yr].

required
covid_end_year_reference_rpk_ratio float

Percentage of traffic level reached in Covid-19 end year compared with the one in Covid-19 start year [%].

required
cagr_passenger_short_range_reference_periods list

Reference periods for the CAGR for passenger short-range market [yr].

required
cagr_passenger_short_range_reference_periods_values list

CAGR for passenger short-range market for the reference periods [%].

required
cagr_passenger_medium_range_reference_periods list

Reference periods for the CAGR for passenger medium-range market [yr].

required
cagr_passenger_medium_range_reference_periods_values list

CAGR for passenger medium-range market for the reference periods [%].

required
cagr_passenger_long_range_reference_periods list

Reference periods for the CAGR for passenger long-range market [yr].

required
cagr_passenger_long_range_reference_periods_values list

CAGR for passenger long-range market for the reference periods [%].

required
rpk_short_range_measures_impact Series

Traffic reduction impact of specific measures for passenger short-range market [%].

required
rpk_medium_range_measures_impact Series

Traffic reduction impact of specific measures for passenger medium-range market [%].

required
rpk_long_range_measures_impact Series

Traffic reduction impact of specific measures for passenger long-range market [%].

required
airfare_per_rpk Series

Airfare per RPK [€/RPK].

required
price_elasticity float

Price elasticity of demand [-].

required

Returns:

Type Description
rpk_short_range

Number of Revenue Passenger Kilometer (RPK) for passenger short-range market [RPK].

rpk_medium_range

Number of Revenue Passenger Kilometer (RPK) for passenger medium-range market [RPK].

rpk_long_range

Number of Revenue Passenger Kilometer (RPK) for passenger long-range market [RPK].

rpk

Number of Revenue Passenger Kilometer (RPK) for total passenger air transport [RPK].

rpk_no_elasticity

RPKs without considering price elasticity [RPK].

rpk_short_range_no_elasticity

Short-range RPKs without considering price elasticity [RPK].

rpk_medium_range_no_elasticity

Medium-range RPKs without considering price elasticity [RPK].

rpk_long_range_no_elasticity

Long-range RPKs without considering price elasticity [RPK].

annual_growth_rate_passenger_short_range

Annual growth rate for short-range passengers [%/year].

annual_growth_rate_passenger_medium_range

Annual growth rate for medium-range passengers [%/year].

annual_growth_rate_passenger_long_range

Annual growth rate for long-range passengers [%/year].

annual_growth_rate_passenger

Annual growth rate for total passengers [%/year].

cagr_rpk_short_range

Air traffic CAGR over prospective_years for passenger short-range market [%].

cagr_rpk_medium_range

Air traffic CAGR over prospective_years for passenger medium-range market [%].

cagr_rpk_long_range

Air traffic CAGR over prospective_years for passenger long-range market [%].

cagr_rpk

Air traffic CAGR over prospective_years for total passenger market [%].

prospective_evolution_rpk_short_range

Evolution in percentage of Revenue Passenger Kilometer (RPK) for passenger short-range market between prospection_start_year and end_year [%].

prospective_evolution_rpk_medium_range

Evolution in percentage of Revenue Passenger Kilometer (RPK) for passenger medium-range market between prospection_start_year and end_year [%].

prospective_evolution_rpk_long_range

Evolution in percentage of Revenue Passenger Kilometer (RPK) for passenger long-range market between prospection_start_year and end_year [%].

prospective_evolution_rpk

Evolution in percentage of Revenue Passenger Kilometer (RPK) for total passenger market between prospection_start_year and end_year [%].

Source code in aeromaps/models/air_transport/air_traffic/price_elasticity.py
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
def compute(
    self,
    rpk_init: pd.Series,
    short_range_rpk_share_2019: float,
    medium_range_rpk_share_2019: float,
    long_range_rpk_share_2019: float,
    covid_start_year: Number,
    covid_rpk_drop_start_year: float,
    covid_end_year_passenger: Number,
    covid_end_year_reference_rpk_ratio: float,
    cagr_passenger_short_range_reference_periods: list,
    cagr_passenger_short_range_reference_periods_values: list,
    cagr_passenger_medium_range_reference_periods: list,
    cagr_passenger_medium_range_reference_periods_values: list,
    cagr_passenger_long_range_reference_periods: list,
    cagr_passenger_long_range_reference_periods_values: list,
    rpk_short_range_measures_impact: pd.Series,
    rpk_medium_range_measures_impact: pd.Series,
    rpk_long_range_measures_impact: pd.Series,
    airfare_per_rpk: pd.Series,
    price_elasticity: float,
) -> Tuple[
    pd.Series,
    pd.Series,
    pd.Series,
    pd.Series,
    pd.Series,
    pd.Series,
    pd.Series,
    pd.Series,
    pd.Series,
    pd.Series,
    pd.Series,
    pd.Series,
    float,
    float,
    float,
    float,
    float,
    float,
    float,
    float,
]:
    """
    Execute the computation of prospective air traffic.

    Parameters
    ----------
    rpk_init
        Historical number of Revenue Passenger Kilometer (RPK) over 2000-2019 [RPK].
    short_range_rpk_share_2019
        Share of RPK from short-range market in 2019 [%].
    medium_range_rpk_share_2019
        Share of RPK from medium-range market in 2019 [%].
    long_range_rpk_share_2019
        Share of RPK from long-range market in 2019 [%].
    covid_start_year
        Covid-19 start year [yr].
    covid_rpk_drop_start_year
        Drop in RPK due to Covid-19 for the start year [%].
    covid_end_year_passenger
        Covid-19 end year [yr].
    covid_end_year_reference_rpk_ratio
        Percentage of traffic level reached in Covid-19 end year compared with the one in Covid-19 start year [%].
    cagr_passenger_short_range_reference_periods
        Reference periods for the CAGR for passenger short-range market [yr].
    cagr_passenger_short_range_reference_periods_values
        CAGR for passenger short-range market for the reference periods [%].
    cagr_passenger_medium_range_reference_periods
        Reference periods for the CAGR for passenger medium-range market [yr].
    cagr_passenger_medium_range_reference_periods_values
        CAGR for passenger medium-range market for the reference periods [%].
    cagr_passenger_long_range_reference_periods
        Reference periods for the CAGR for passenger long-range market [yr].
    cagr_passenger_long_range_reference_periods_values
        CAGR for passenger long-range market for the reference periods [%].
    rpk_short_range_measures_impact
        Traffic reduction impact of specific measures for passenger short-range market [%].
    rpk_medium_range_measures_impact
        Traffic reduction impact of specific measures for passenger medium-range market [%].
    rpk_long_range_measures_impact
        Traffic reduction impact of specific measures for passenger long-range market [%].
    airfare_per_rpk
        Airfare per RPK [€/RPK].
    price_elasticity
        Price elasticity of demand [-].

    Returns
    -------
    rpk_short_range
        Number of Revenue Passenger Kilometer (RPK) for passenger short-range market [RPK].
    rpk_medium_range
        Number of Revenue Passenger Kilometer (RPK) for passenger medium-range market [RPK].
    rpk_long_range
        Number of Revenue Passenger Kilometer (RPK) for passenger long-range market [RPK].
    rpk
        Number of Revenue Passenger Kilometer (RPK) for total passenger air transport [RPK].
    rpk_no_elasticity
        RPKs without considering price elasticity [RPK].
    rpk_short_range_no_elasticity
        Short-range RPKs without considering price elasticity [RPK].
    rpk_medium_range_no_elasticity
        Medium-range RPKs without considering price elasticity [RPK].
    rpk_long_range_no_elasticity
        Long-range RPKs without considering price elasticity [RPK].
    annual_growth_rate_passenger_short_range
        Annual growth rate for short-range passengers [%/year].
    annual_growth_rate_passenger_medium_range
        Annual growth rate for medium-range passengers [%/year].
    annual_growth_rate_passenger_long_range
        Annual growth rate for long-range passengers [%/year].
    annual_growth_rate_passenger
        Annual growth rate for total passengers [%/year].
    cagr_rpk_short_range
        Air traffic CAGR over prospective_years for passenger short-range market [%].
    cagr_rpk_medium_range
        Air traffic CAGR over prospective_years for passenger medium-range market [%].
    cagr_rpk_long_range
        Air traffic CAGR over prospective_years for passenger long-range market [%].
    cagr_rpk
        Air traffic CAGR over prospective_years for total passenger market [%].
    prospective_evolution_rpk_short_range
        Evolution in percentage of Revenue Passenger Kilometer (RPK) for passenger short-range market between prospection_start_year and end_year [%].
    prospective_evolution_rpk_medium_range
        Evolution in percentage of Revenue Passenger Kilometer (RPK) for passenger medium-range market between prospection_start_year and end_year [%].
    prospective_evolution_rpk_long_range
        Evolution in percentage of Revenue Passenger Kilometer (RPK) for passenger long-range market between prospection_start_year and end_year [%].
    prospective_evolution_rpk
        Evolution in percentage of Revenue Passenger Kilometer (RPK) for total passenger market between prospection_start_year and end_year [%].
    """

    hist_index = range(self.historic_start_year, self.prospection_start_year)
    covid_years = range(covid_start_year, covid_end_year_passenger + 1)
    proj_years = range(covid_end_year_passenger + 1, self.end_year + 1)
    # all_years = range(self.historic_start_year, self.end_year + 1)

    self.df.loc[hist_index, "rpk_short_range"] = (
        short_range_rpk_share_2019 / 100 * rpk_init.loc[hist_index]
    )
    self.df.loc[hist_index, "rpk_medium_range"] = (
        medium_range_rpk_share_2019 / 100 * rpk_init.loc[hist_index]
    )
    self.df.loc[hist_index, "rpk_long_range"] = (
        long_range_rpk_share_2019 / 100 * rpk_init.loc[hist_index]
    )

    # Covid functions
    reference_years = [covid_start_year, covid_end_year_passenger]
    reference_values_covid = [
        1 - covid_rpk_drop_start_year / 100,
        covid_end_year_reference_rpk_ratio / 100,
    ]
    covid_function = interp1d(reference_years, reference_values_covid, kind="linear")
    covid_factors = pd.Series(
        [float(covid_function(k)) for k in covid_years], index=covid_years, dtype=float
    )

    # CAGR function
    ## Short range
    annual_growth_rate_passenger_short_range_prospective = aeromaps_leveling_function(
        self,
        cagr_passenger_short_range_reference_periods,
        cagr_passenger_short_range_reference_periods_values,
        model_name=self.name,
    )
    self.df.loc[:, "annual_growth_rate_passenger_short_range"] = (
        annual_growth_rate_passenger_short_range_prospective
    )
    ## Medium range
    annual_growth_rate_passenger_medium_range_prospective = aeromaps_leveling_function(
        self,
        cagr_passenger_medium_range_reference_periods,
        cagr_passenger_medium_range_reference_periods_values,
        model_name=self.name,
    )
    self.df.loc[:, "annual_growth_rate_passenger_medium_range"] = (
        annual_growth_rate_passenger_medium_range_prospective
    )
    ## Long range
    annual_growth_rate_passenger_long_range_prospective = aeromaps_leveling_function(
        self,
        cagr_passenger_long_range_reference_periods,
        cagr_passenger_long_range_reference_periods_values,
        model_name=self.name,
    )
    self.df.loc[:, "annual_growth_rate_passenger_long_range"] = (
        annual_growth_rate_passenger_long_range_prospective
    )

    # Covid période vectorisée
    prev_short = self.df.loc[covid_start_year - 1, "rpk_short_range"]
    prev_medium = self.df.loc[covid_start_year - 1, "rpk_medium_range"]
    prev_long = self.df.loc[covid_start_year - 1, "rpk_long_range"]
    self.df.loc[covid_years, "rpk_short_range"] = prev_short * covid_factors
    self.df.loc[covid_years, "rpk_medium_range"] = prev_medium * covid_factors
    self.df.loc[covid_years, "rpk_long_range"] = prev_long * covid_factors

    # Prospective période vectorisée (hors covid)
    # Short
    growth_short = 1 + self.df.loc[proj_years, "annual_growth_rate_passenger_short_range"] / 100
    self.df.loc[proj_years, "rpk_short_range"] = (
        self.df.loc[covid_end_year_passenger, "rpk_short_range"] * growth_short.cumprod()
    )
    # Medium
    growth_medium = (
        1 + self.df.loc[proj_years, "annual_growth_rate_passenger_medium_range"] / 100
    )
    self.df.loc[proj_years, "rpk_medium_range"] = (
        self.df.loc[covid_end_year_passenger, "rpk_medium_range"] * growth_medium.cumprod()
    )
    # Long
    growth_long = 1 + self.df.loc[proj_years, "annual_growth_rate_passenger_long_range"] / 100
    self.df.loc[proj_years, "rpk_long_range"] = (
        self.df.loc[covid_end_year_passenger, "rpk_long_range"] * growth_long.cumprod()
    )

    rpk_short_range_no_elasticity = self.df["rpk_short_range"].copy()
    rpk_medium_range_no_elasticity = self.df["rpk_medium_range"].copy()
    rpk_long_range_no_elasticity = self.df["rpk_long_range"].copy()

    # rpk_no_elasticity
    self.df.loc[hist_index, "rpk_no_elasticity"] = rpk_init.loc[hist_index]
    self.df.loc[self.prospection_start_year : self.end_year, "rpk_no_elasticity"] = (
        self.df.loc[self.prospection_start_year : self.end_year, "rpk_short_range"].fillna(0)
        + self.df.loc[self.prospection_start_year : self.end_year, "rpk_medium_range"].fillna(0)
        + self.df.loc[self.prospection_start_year : self.end_year, "rpk_long_range"].fillna(0)
    )
    rpk_no_elasticity = self.df["rpk_no_elasticity"]

    self.df.loc[self.historic_start_year : covid_end_year_passenger, "rpk"] = (
        rpk_no_elasticity.loc[self.historic_start_year : covid_end_year_passenger]
    )

    airfare_init = 0.09236379319842411

    self.df.loc[covid_end_year_passenger + 1 : self.end_year, "rpk"] = (
        rpk_no_elasticity
        / (airfare_init**price_elasticity)
        * (
            airfare_per_rpk.loc[covid_end_year_passenger + 1 : self.end_year]
            ** price_elasticity
        )
    )

    # Répartition par segment vectorisée
    rpk_short_range = self.df["rpk_short_range"] * self.df["rpk"] / rpk_no_elasticity
    rpk_medium_range = self.df["rpk_medium_range"] * self.df["rpk"] / rpk_no_elasticity
    rpk_long_range = self.df["rpk_long_range"] * self.df["rpk"] / rpk_no_elasticity

    # TODO discuss if that should be considered for surplus destruction. I think so => not inlcluded in rpk_no_elasticity
    rpk_short_range = rpk_short_range * rpk_short_range_measures_impact
    rpk_medium_range = rpk_medium_range * rpk_medium_range_measures_impact
    rpk_long_range = rpk_long_range * rpk_long_range_measures_impact

    self.df.loc[:, "rpk_short_range"] = rpk_short_range
    self.df.loc[:, "rpk_medium_range"] = rpk_medium_range
    self.df.loc[:, "rpk_long_range"] = rpk_long_range

    # Total RPK vectorisé
    self.df.loc[hist_index, "rpk"] = rpk_init.loc[hist_index]
    self.df.loc[self.prospection_start_year : self.end_year, "rpk"] = (
        self.df.loc[self.prospection_start_year : self.end_year, "rpk_short_range"].fillna(0)
        + self.df.loc[self.prospection_start_year : self.end_year, "rpk_medium_range"].fillna(0)
        + self.df.loc[self.prospection_start_year : self.end_year, "rpk_long_range"].fillna(0)
    )
    rpk = self.df["rpk"]

    # Annual growth rates vectorisés
    idx_growth = range(self.historic_start_year + 1, self.end_year + 1)
    self.df.loc[idx_growth, "annual_growth_rate_passenger_short_range"] = (
        self.df["rpk_short_range"].loc[idx_growth].values
        / self.df["rpk_short_range"].shift(1).loc[idx_growth].values
        - 1
    ) * 100
    self.df.loc[idx_growth, "annual_growth_rate_passenger_medium_range"] = (
        self.df["rpk_medium_range"].loc[idx_growth].values
        / self.df["rpk_medium_range"].shift(1).loc[idx_growth].values
        - 1
    ) * 100
    self.df.loc[idx_growth, "annual_growth_rate_passenger_long_range"] = (
        self.df["rpk_long_range"].loc[idx_growth].values
        / self.df["rpk_long_range"].shift(1).loc[idx_growth].values
        - 1
    ) * 100
    self.df.loc[idx_growth, "annual_growth_rate_passenger"] = (
        self.df["rpk"].loc[idx_growth].values / self.df["rpk"].shift(1).loc[idx_growth].values
        - 1
    ) * 100

    annual_growth_rate_passenger_short_range = self.df[
        "annual_growth_rate_passenger_short_range"
    ]
    annual_growth_rate_passenger_medium_range = self.df[
        "annual_growth_rate_passenger_medium_range"
    ]
    annual_growth_rate_passenger_long_range = self.df["annual_growth_rate_passenger_long_range"]
    annual_growth_rate_passenger = self.df["annual_growth_rate_passenger"]

    # Compound Annual Growth Rate (CAGR)
    cagr_rpk_short_range = 100 * (
        (
            self.df.loc[self.end_year, "rpk_short_range"]
            / self.df.loc[self.prospection_start_year - 1, "rpk_short_range"]
        )
        ** (1 / (self.end_year - self.prospection_start_year))
        - 1
    )
    cagr_rpk_medium_range = 100 * (
        (
            self.df.loc[self.end_year, "rpk_medium_range"]
            / self.df.loc[self.prospection_start_year - 1, "rpk_medium_range"]
        )
        ** (1 / (self.end_year - self.prospection_start_year))
        - 1
    )
    cagr_rpk_long_range = 100 * (
        (
            self.df.loc[self.end_year, "rpk_long_range"]
            / self.df.loc[self.prospection_start_year - 1, "rpk_long_range"]
        )
        ** (1 / (self.end_year - self.prospection_start_year))
        - 1
    )
    cagr_rpk = 100 * (
        (
            self.df.loc[self.end_year, "rpk"]
            / self.df.loc[self.prospection_start_year - 1, "rpk"]
        )
        ** (1 / (self.end_year - self.prospection_start_year))
        - 1
    )

    # Prospective evolution of RPK (between prospection_start_year-1 and end_year)
    prospective_evolution_rpk_short_range = 100 * (
        self.df.loc[self.end_year, "rpk_short_range"]
        / self.df.loc[self.prospection_start_year - 1, "rpk_short_range"]
        - 1
    )
    prospective_evolution_rpk_medium_range = 100 * (
        self.df.loc[self.end_year, "rpk_medium_range"]
        / self.df.loc[self.prospection_start_year - 1, "rpk_medium_range"]
        - 1
    )
    prospective_evolution_rpk_long_range = 100 * (
        self.df.loc[self.end_year, "rpk_long_range"]
        / self.df.loc[self.prospection_start_year - 1, "rpk_long_range"]
        - 1
    )
    prospective_evolution_rpk = 100 * (
        self.df.loc[self.end_year, "rpk"] / self.df.loc[self.prospection_start_year - 1, "rpk"]
        - 1
    )

    self.float_outputs["cagr_rpk_short_range"] = cagr_rpk_short_range
    self.float_outputs["cagr_rpk_medium_range"] = cagr_rpk_medium_range
    self.float_outputs["cagr_rpk_long_range"] = cagr_rpk_long_range
    self.float_outputs["cagr_rpk"] = cagr_rpk
    self.float_outputs["prospective_evolution_rpk_short_range"] = (
        prospective_evolution_rpk_short_range
    )
    self.float_outputs["prospective_evolution_rpk_medium_range"] = (
        prospective_evolution_rpk_medium_range
    )
    self.float_outputs["prospective_evolution_rpk_long_range"] = (
        prospective_evolution_rpk_long_range
    )
    self.float_outputs["prospective_evolution_rpk"] = prospective_evolution_rpk

    return (
        rpk_short_range,
        rpk_medium_range,
        rpk_long_range,
        rpk,
        rpk_no_elasticity,
        rpk_short_range_no_elasticity,
        rpk_medium_range_no_elasticity,
        rpk_long_range_no_elasticity,
        annual_growth_rate_passenger_short_range,
        annual_growth_rate_passenger_medium_range,
        annual_growth_rate_passenger_long_range,
        annual_growth_rate_passenger,
        cagr_rpk_short_range,
        cagr_rpk_medium_range,
        cagr_rpk_long_range,
        cagr_rpk,
        prospective_evolution_rpk_short_range,
        prospective_evolution_rpk_medium_range,
        prospective_evolution_rpk_long_range,
        prospective_evolution_rpk,
    )